Infrared photodissociation spectroscopy and density-functional calculations of protonated methanol cluster ions: Solvation structures of an excess proton.

Solvation structures of an excess proton in protonated methanol cluster ions, H(+)(CH(3)OH)(n) (n=5-8), were investigated by photodissociation spectroscopy in the middle infrared region (900-2300 cm(-1)) and by using density-functional theory. This work indicates that the excess proton is delocalized between two methanol molecules. Spectral features observed in the range 1400-1800 cm(-1) are attributed to vibrational modes involving collective motion of the shared proton and the two ligand molecules. At n=6-8, broad spectral features in the region above 1800 cm(-1) suggest coexistence of isomers in which the excess proton and a methanol molecule are tightly bound to form an ion core, CH(3)OH(2) (+).

[1]  Mark A. Johnson,et al.  Gas-phase infrared spectroscopy and multidimensional quantum calculations of the protonated ammonia dimer N2H7+. , 2007, Angewandte Chemie.

[2]  J. Kuo,et al.  Theoretical analyses of the morphological development of the hydrogen bond network in protonated methanol clusters. , 2007, The journal of physical chemistry. A.

[3]  K. Tono,et al.  Infrared photodissociation spectroscopy of NH4+(NH3)n (n = 3 and 4) by using free electron laser , 2007 .

[4]  J. Roscioli,et al.  Quantum Structure of the Intermolecular Proton Bond , 2007, Science.

[5]  Koichi Tsukiyama,et al.  Infrared photodissociation spectroscopy of protonated ammonia cluster ions, NH4+(NH3)n (n=5-8), by using infrared free electron laser. , 2006, The Journal of chemical physics.

[6]  E. Bernstein,et al.  Infrared plus vacuum ultraviolet spectroscopy of neutral and ionic methanol monomers and clusters: new experimental results. , 2006, The Journal of chemical physics.

[7]  T. D. Fridgen,et al.  Gas phase infrared multiple-photon dissociation spectra of methanol, ethanol and propanol proton-bound dimers, protonated propanol and the propanol/water proton-bound dimer. , 2006, Physical chemistry chemical physics : PCCP.

[8]  T. D. Fridgen,et al.  Infrared spectra of homogeneous and heterogeneous proton-bound dimers in the gas phase. , 2005, Physical chemistry chemical physics : PCCP.

[9]  Joel M Bowman,et al.  The vibrational predissociation spectra of the H5O2 +RGn(RG = Ar,Ne) clusters: correlation of the solvent perturbations in the free OH and shared proton transitions of the Zundel ion. , 2005, The Journal of chemical physics.

[10]  Evgeniy M. Myshakin,et al.  Spectral Signatures of Hydrated Proton Vibrations in Water Clusters , 2005, Science.

[11]  M. Klein,et al.  Vibrational predissociation spectra and hydrogen-bond topologies of H+(H2O)9-11. , 2005, Physical chemistry chemical physics : PCCP.

[12]  M. Klein,et al.  Protonated clathrate cages enclosing neutral water molecules: (H+)(H2O)21 and (H+)(H2O)28. , 2005, The Journal of chemical physics.

[13]  Mark A. Johnson,et al.  Fundamental excitations of the shared proton in the H3O2- and H5O2+ complexes. , 2005, The journal of physical chemistry. A.

[14]  A. Fujii,et al.  Morphology of protonated methanol clusters: an infrared spectroscopic study of hydrogen bond networks of H+(CH3OH)n (n = 4-15). , 2005, The journal of physical chemistry. A.

[15]  Mark A. Johnson,et al.  Predissociation spectroscopy of the argon-solvated H5O2+ "zundel" cation in the 1000-1900 cm(-1) region. , 2004, The Journal of chemical physics.

[16]  T. D. Fridgen,et al.  Infrared Spectrum of the Protonated Water Dimer in the Gas Phase , 2004 .

[17]  O. Dopfer,et al.  IR spectrum and structure of protonated ethanol dimer: implications for the mobility of excess protons in solution. , 2004, Journal of the American Chemical Society.

[18]  K. Jordan,et al.  Infrared Signature of Structures Associated with the H+(H2O)n (n = 6 to 27) Clusters , 2004, Science.

[19]  Asuka Fujii,et al.  Infrared Spectroscopic Evidence for Protonated Water Clusters Forming Nanoscale Cages , 2004, Science.

[20]  J. Oomens,et al.  Probing the vibrations of shared, OH+O-bound protons in the gas phase. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[21]  H. Kuroda,et al.  Improvement of KHI FEL device at FEL-SUT , 2003 .

[22]  K. Ohashi,et al.  Infrared spectra and structures of (CH3NH2)nH+ (n=1–4). Binding features of an excess proton , 2003 .

[23]  Ludger Wöste,et al.  Gas-Phase Infrared Spectrum of the Protonated Water Dimer , 2003, Science.

[24]  C. Chaudhuri,et al.  Hydrogen bond rearrangements and interconversions of H+(CH3OH)4H2O cluster isomers , 2002 .

[25]  Isaiah Shavitt,et al.  Structure and vibrational spectra of H+(H2O)8: Is the excess proton in a symmetrical hydrogen bond? , 2000 .

[26]  Huan-Cheng Chang,et al.  Infrared Spectra of H+(H2O)5-8 Clusters: Evidence for Symmetric Proton Hydration , 2000 .

[27]  S. Lin,et al.  Isomeric Transitions between Linear and Cyclic H+(CH3OH)4,5: Implications for Proton Migration in Liquid Methanol , 1999 .

[28]  T. Kondow,et al.  Infrared Spectroscopy of NH4+(NH3)n-1 (n = 6−9): Shell Structures and Collective ν2 Vibrations , 1996 .

[29]  J. T. Hougen,et al.  Vibration-Rotation Spectroscopy of the Hydrated Hydronium Ions H5O+2 and H9O+4 , 1994 .

[30]  J. M. Price,et al.  Vibrational spectroscopy of the ammoniated ammonium ions NH4+(NH3)n (n=1-10) , 1991 .

[31]  J. Price,et al.  Vibrational spectroscopy of the hydrated hydronium cluster ions H3O+·(H2O)n (n=1, 2, 3) , 1989 .

[32]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[33]  Yuan-Pern Lee,et al.  Infrared spectra of the cluster ions H7O+3⋅H2 and H9O+4⋅H2 , 1986 .

[34]  S. Scheiner Theoretical studies of proton transfers , 1985 .

[35]  Harold A. Schwarz,et al.  Gas phase infrared spectra of oxonium hydrate ions from 2 to 5 μ , 1977 .

[36]  Y. Lee,et al.  Hydrogen-Bond Rearrangement and Intermolecular Proton Transfer in Protonated Methanol Clusters , 1999 .