Mathematical Software – ICMS 2018
暂无分享,去创建一个
Josef Urban | James H. Davenport | George Labahn | Manuel Kauers | J. Davenport | J. Urban | M. Kauers | G. Labahn | Manuel Kauers
[1] Antonio Montes,et al. A New Algorithm for Discussing Gröbner Bases with Parameters , 2002, J. Symb. Comput..
[2] Dima Grigoriev,et al. Homomorphic public-key cryptosystems over groups and rings , 2003, ArXiv.
[3] Niels Schwartz,et al. Stability of Gröbner bases , 1988 .
[4] Amir Hashemi,et al. Erratum to "A new algorithm for discussing Gröbner bases with parameters" [J. Symbolic Comput. 33(1-2) (2002) 183-208] , 2011, J. Symb. Comput..
[5] J. Köbler,et al. The Graph Isomorphism Problem: Its Structural Complexity , 1993 .
[6] Alexander Russell,et al. The power of basis selection in fourier sampling: hidden subgroup problems in affine groups , 2004, SODA '04.
[7] Frédéric Magniez,et al. Hidden Translation and Translating Coset in Quantum Computing , 2014, SIAM J. Comput..
[8] Daniel R. Simon,et al. On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[9] O. Regev. A Subexponential Time Algorithm for the Dihedral Hidden Subgroup Problem with Polynomial Space , 2004, quant-ph/0406151.
[10] Richard J. Lipton,et al. Quantum Cryptanalysis of Hidden Linear Functions (Extended Abstract) , 1995, CRYPTO.
[11] Greg Kuperberg. A Subexponential-Time Quantum Algorithm for the Dihedral Hidden Subgroup Problem , 2005, SIAM J. Comput..
[12] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[13] Teo Mora,et al. The Gröbner Fan of an Ideal , 1988, J. Symb. Comput..
[14] Alexander Russell,et al. Normal subgroup reconstruction and quantum computation using group representations , 2000, STOC '00.
[15] Umesh V. Vazirani,et al. Quantum mechanical algorithms for the nonabelian hidden subgroup problem , 2001, STOC '01.
[16] Gábor Ivanyos,et al. Quantum computation of discrete logarithms in semigroups , 2013, J. Math. Cryptol..
[17] Rekha R. Thomas,et al. Computing Gröbner fans , 2007, Math. Comput..
[18] Akira Suzuki,et al. A simple algorithm to compute comprehensive Gröbner bases using Gröbner bases , 2006, ISSAC '06.
[19] Emanuel Knill,et al. The quantum query complexity of the hidden subgroup problem is polynomial , 2004, Inf. Process. Lett..
[20] Volker Weispfenning. Constructing Universal Groebner Bases , 1987, AAECC.
[21] George Petrides. Cryptanalysis of the Public Key Cryptosystem Based on the Word Problem on the Grigorchuk Groups , 2003, IMACC.
[22] Aleks Kissinger,et al. Fully graphical treatment of the quantum algorithm for the Hidden Subgroup Problem , 2017, 1701.08669.
[23] Komei Fukuda,et al. The generic Gröbner walk , 2007, J. Symb. Comput..
[24] B. Sturmfels. Gröbner bases and convex polytopes , 1995 .
[25] Renato Portugal,et al. An Efficient Quantum Algorithm for the Hidden Subgroup Problem over some Non-Abelian Groups , 2015 .
[26] Dmitry Gavinsky,et al. Quantum solution to the hidden subgroup problem for poly-near-hamiltonian groups , 2004, Quantum Inf. Comput..
[27] Alexander Russell,et al. Quantum-Secure Symmetric-Key Cryptography Based on Hidden Shifts , 2016, EUROCRYPT.
[28] Dima Grigoriev,et al. Testing Shift-Equivalence of Polynomials by Deterministic, Probabilistic and Quantum Machines , 1997, Theor. Comput. Sci..
[29] T. Beth,et al. Polynomial-Time Solution to the Hidden Subgroup Problem for a Class of non-abelian Groups , 1998, quant-ph/9812070.
[30] R. Portugal,et al. Solution to the Hidden Subgroup Problem for a Class of Noncommutative Groups , 2011, 1104.1361.
[31] А Е Китаев,et al. Квантовые вычисления: алгоритмы и исправление ошибок@@@Quantum computations: algorithms and error correction , 1997 .
[32] Gilles Brassard,et al. An exact quantum polynomial-time algorithm for Simon's problem , 1997, Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems.
[33] Amir Hashemi,et al. Gröbner Systems Conversion , 2017, Mathematics in Computer Science.
[34] Frédéric Magniez,et al. Efficient Quantum Algorithms For Some Instances Of The Non-Abelian Hidden Subgroup Problem , 2003, Int. J. Found. Comput. Sci..
[35] Yao Sun,et al. A new algorithm for computing comprehensive Gröbner systems , 2010, ISSAC.
[36] F. Gall,et al. An Efficient Algorithm for the Hidden Subgroup Problem over a Class of Semi-direct Product Groups , 2004 .
[37] Frédéric Magniez,et al. Hidden translation and orbit coset in quantum computing , 2002, STOC '03.
[38] Alan Veliz-Cuba,et al. The Neural Ring: An Algebraic Tool for Analyzing the Intrinsic Structure of Neural Codes , 2012, Bulletin of Mathematical Biology.
[39] Oded Regev. Quantum Computation and Lattice Problems , 2004, SIAM J. Comput..
[40] J. O'Keefe,et al. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.