A Nonlinear Structural Model for Volatility Clustering

A simple nonlinear structural model of endogenous belief heterogeneity is proposed. News about fundamentals is an IID random process, but nevertheless volatility clustering occurs as an endogenous phenomenon caused by the interaction between different types of traders, fundamentalists and technical analysts. The belief types are driven by an adaptive, evolutionary dynamics according to the success of the prediction strategies in the recent past conditioned upon price deviations from the rational expectations fundamental price. Asset prices switch irregularly between two different regimes - close to the fundamental price fluctuations with low volatility, and periods of persistent deviations from fundamentals where the market is dominated by technical trading - thus, creating time varying volatility similar to that observed in real financial data.

[1]  Jasmina Arifovic,et al.  Statistical properties of genetic learning in a model of exchange rate , 2000 .

[2]  A. Timmermann Excess Volatility and Predictability of Stock Prices in Autoregressive Dividend Models with Learning , 1996 .

[3]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[4]  Y. Kuznetsov Elements of applied bifurcation theory (2nd ed.) , 1998 .

[5]  C. Praagman,et al.  System Dynamics in Economic and Financial Models , 1997 .

[6]  William A. Brock,et al.  A rational route to randomness , 1997 .

[7]  M. Marchesi,et al.  VOLATILITY CLUSTERING IN FINANCIAL MARKETS: A MICROSIMULATION OF INTERACTING AGENTS , 2000 .

[8]  C. Granger,et al.  Varieties of long memory models , 1996 .

[9]  Wagner A. Kamakura,et al.  Book Review: Structural Analysis of Discrete Data with Econometric Applications , 1982 .

[10]  Mark P. Taylor,et al.  Money and financial markets , 1993 .

[11]  Bryan R. Routledge Adaptive Learning in Financial Markets , 1999 .

[12]  Floris Takens,et al.  Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations : fractal dimensions and infinitely many attractors , 1993 .

[13]  Adrian Pagan,et al.  The econometrics of financial markets , 1996 .

[14]  William A. Brock,et al.  Models of complexity in economics and finance , 1997 .

[15]  Mark Alan Bullock,et al.  Global Climate Change on Venus , 1999 .

[16]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[17]  R. Baillie,et al.  Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .

[18]  R. Palmer,et al.  Asset Pricing Under Endogenous Expectations in an Artificial Stock Market , 1996 .

[19]  Florian Wagener,et al.  Adaptive Beliefs and the volatility of asset prices , 2001 .

[20]  W. Arthur,et al.  The Economy as an Evolving Complex System II , 1988 .

[21]  M. Marchesi,et al.  Scaling and criticality in a stochastic multi-agent model of a financial market , 1999, Nature.

[22]  F. Breidt,et al.  The detection and estimation of long memory in stochastic volatility , 1998 .

[23]  Carl Chiarella,et al.  The dynamics of speculative behaviour , 1992, Ann. Oper. Res..

[24]  A. Lo,et al.  When are Contrarian Profits Due to Stock Market Overreaction? , 1989 .

[25]  A. Kyle Continuous Auctions and Insider Trading , 1985 .

[26]  Sanford J. Grossman On the Impossibility of Informationally Efficient Markets , 1980 .

[27]  Gilles Teyssière,et al.  Microeconomic Models for Long Memory in the Volatility of Financial Time Series , 2001 .

[28]  William A. Brock,et al.  PATHWAYS TO RANDOMNESS IN THE ECONOMY: EMERGENT NONLINEARITY AND CHAOS IN ECONOMICS AND FINANCE , 1993 .

[29]  Benoit B. Mandelbrot,et al.  Fractals and Scaling in Finance , 1997 .

[30]  T. Lux Herd Behaviour, Bubbles and Crashes , 1995 .

[31]  Andrea Gaunersdorfer,et al.  Endogenous fluctuations in a simple asset pricing model with heterogeneous agents , 2000 .

[32]  D. Hirshleifer Investor Psychology and Asset Pricing , 2001 .

[33]  Patrick de Fontnouvelle,et al.  INFORMATION DYNAMICS IN FINANCIAL MARKETS , 2000, Macroeconomic Dynamics.

[34]  Allan Timmermann,et al.  How Learning in Financial Markets Generates Excess Volatility and Predictability in Stock Prices , 1993 .

[35]  M. Embrechts,et al.  Exchange Rate Theory: Chaotic Models of Foreign Exchange Markets , 1993 .

[36]  Kenneth A. Froot,et al.  Understanding the U.S. Dollar in the Eighties: The Expectations of Chartists and Fundamentalists , 1987 .

[37]  Campbell R. Harvey,et al.  Conditional Skewness in Asset Pricing Tests , 1999 .

[38]  A. Shleifer,et al.  Inefficient Markets: An Introduction to Behavioral Finance , 2002 .

[39]  André de Palma,et al.  Discrete Choice Theory of Product Differentiation , 1995 .

[40]  M. Woodford AN INTERVIEW WITH WILLIAM A. BROCK , 2000, Macroeconomic Dynamics.

[41]  R. Palmer,et al.  Time series properties of an artificial stock market , 1999 .

[42]  E. C. Zeeman,et al.  On the unstable behaviour of stock exchanges , 1974 .

[43]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[44]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[45]  Bernardo A. Huberman,et al.  Clustered volatility in multiagent dynamics , 1995, adap-org/9502006.

[46]  Cars H. Hommes,et al.  Financial markets as nonlinear adaptive evolutionary systems , 2001 .

[47]  J. Farmer,et al.  The price dynamics of common trading strategies , 2000, cond-mat/0012419.

[48]  W. Brock,et al.  Heterogeneous beliefs and routes to chaos in a simple asset pricing model , 1998 .

[49]  B. Mandelbrot A Multifractal Walk down Wall Street , 1999 .

[50]  Willaiam A. Brock,et al.  Asset Price Behavior in Complex Environments , 1996 .

[51]  Hersh Shefrin,et al.  Beyond greed and fear : understanding behavioral finance and the psychology of investing , 2000 .

[52]  R. Gomory,et al.  Fractals and Scaling in Finance: Discontinuity, Concentration, Risk. Selecta Volume E , 1997 .