Genetic models of cancer in zebrafish.

Firmly established as a model system for development, the zebrafish is now emerging as an effective system for the study of the fundamental aspects of tumorigenesis. In keeping with the striking anatomical and physiological similarity between fish and mammals, zebrafish develop a wide spectrum of cancers resembling human malignancies. The potential for zebrafish as a cancer model derives from its strengths as an experimental system for developmental biology. Despite 450 million years of evolutionary distance, the pathways that govern vertebrate development including signaling, proliferation, cell movements, differentiation, and apoptosis-indeed, the same pathways that are often misregulated in tumorigenesis-are highly conserved between humans and zebrafish. This, together with a complete genome sequence and an array of tools for gene manipulation, makes the construction of robust, physiological zebrafish cancer models increasingly possible.

[1]  L. Zon,et al.  tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Z. Gong,et al.  Modeling Liver Cancer Using Zebrafish: A Comparative Oncogenomics Approach , 2006, Cell cycle.

[3]  Leonard I Zon,et al.  Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants , 2003, Nature Immunology.

[4]  Rui Qiao,et al.  BRAF oncogenic mutations correlate with progression rather than initiation of human melanoma. , 2003, Cancer research.

[5]  L. Zon,et al.  In vivo drug discovery in the zebrafish , 2005, Nature Reviews Drug Discovery.

[6]  David H Rowitch,et al.  Medulloblastoma: a problem of developmental biology. , 2002, Cancer cell.

[7]  Huiqing Zhan,et al.  Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression , 2006, Nature Biotechnology.

[8]  D. Lane,et al.  Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. , 1990, The EMBO journal.

[9]  E. Lander,et al.  Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. , 2002, Cancer cell.

[10]  J. Davison,et al.  Oncogenic KRAS induces progenitor cell expansion and malignant transformation in zebrafish exocrine pancreas. , 2008, Gastroenterology.

[11]  L. Zon,et al.  New waves of discovery: modeling cancer in zebrafish. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[12]  Edwin Cuppen,et al.  Efficient target-selected mutagenesis in zebrafish. , 2003, Genome research.

[13]  P. Meltzer,et al.  High frequency of BRAF mutations in nevi , 2003, Nature Genetics.

[14]  J. Eisen,et al.  Headwaters of the zebrafish — emergence of a new model vertebrate , 2002, Nature Reviews Genetics.

[15]  M. Noyes,et al.  Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases , 2008, Nature Biotechnology.

[16]  Randall W King,et al.  Small molecules that delay S phase suppress a zebrafish bmyb mutant , 2005, Nature chemical biology.

[17]  M. Kent,et al.  The State of the Art of the Zebrafish Model for Toxicology and Toxicologic Pathology Research—Advantages and Current Limitations , 2003, Toxicologic pathology.

[18]  L. Zon,et al.  Heat shock-inducible Cre/Lox approaches to induce diverse types of tumors and hyperplasia in transgenic zebrafish , 2007, Proceedings of the National Academy of Sciences.

[19]  Guillermina Lozano,et al.  Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53 , 1995, Nature.

[20]  P. Lance,et al.  Colorectal polyps and their relationship to cancer. , 1997, Gastroenterology clinics of North America.

[21]  R. Weinberg,et al.  Tumor spectrum analysis in p53-mutant mice , 1994, Current Biology.

[22]  M. Tyers,et al.  Size control goes global. , 2007, Current opinion in biotechnology.

[23]  D A Kane,et al.  The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. , 1996, Development.

[24]  David Baltimore,et al.  Chimeric Nucleases Stimulate Gene Targeting in Human Cells , 2003, Science.

[25]  D. Parichy,et al.  Zebrafish in the wild: a review of natural history and new notes from the field. , 2007, Zebrafish.

[26]  U. Langheinrich,et al.  Zebrafish as a Model Organism for the Identification and Characterization of Drugs and Genes Affecting p53 Signaling , 2002, Current Biology.

[27]  L. Chin,et al.  Malignant melanoma: genetics and therapeutics in the genomic era. , 2006, Genes & development.

[28]  G. Streisinger Attainment of minimal biological variability and measurements of genotoxicity: production of homozygous diploid zebra fish. , 1984, National Cancer Institute monograph.

[29]  R. Walter,et al.  Xiphophorus interspecies hybrids as genetic models of induced neoplasia. , 2001, ILAR journal.

[30]  P. Pandolfi,et al.  Does the ribosome translate cancer? , 2003, Nature Reviews Cancer.

[31]  M. J. den Broeder,et al.  The Zebrafish Mutants dre, uki, and lep Encode Negative Regulators of the Hedgehog Signaling Pathway , 2005, PLoS genetics.

[32]  J. Dixon,et al.  Zebrafish pten genes have overlapping and non-redundant functions in tumorigenesis and embryonic development , 2008, Oncogene.

[33]  C. Voermans,et al.  Wnt signaling in the stem cell niche , 2004, Current opinion in hematology.

[34]  L. Zon,et al.  Modeling human hematopoietic and cardiovascular diseases in zebrafish , 2003, Developmental dynamics : an official publication of the American Association of Anatomists.

[35]  A. Look,et al.  Fishing for cancer models , 2006, Nature Biotechnology.

[36]  A. Look,et al.  NOTCH1-induced T-cell leukemia in transgenic zebrafish , 2007, Leukemia.

[37]  M. Blagosklonny,et al.  p53 from complexity to simplicity: mutant p53 stabilization, gain‐of‐function, and dominant‐negative effect , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[38]  Lianchun Fan,et al.  Homologous Recombination in Zebrafish ES Cells , 2006, Transgenic Research.

[39]  Charis Eng,et al.  Cancer phenomics: RET and PTEN as illustrative models , 2007, Nature Reviews Cancer.

[40]  Leonard I. Zon,et al.  Cancer genetics and drug discovery in the zebrafish , 2003, Nature Reviews Cancer.

[41]  J. Abrams,et al.  Lessons from p53 in non-mammalian models , 2006, Cell Death and Differentiation.

[42]  E. Lane,et al.  Detection of the p53 response in zebrafish embryos using new monoclonal antibodies , 2008, Oncogene.

[43]  S. Hussain,et al.  p53 biological network: at the crossroads of the cellular-stress response pathway and molecular carcinogenesis. , 2006, Journal of Nippon Medical School = Nippon Ika Daigaku zasshi.

[44]  M. Pack,et al.  Intestinal growth and differentiation in zebrafish , 2005, Mechanisms of Development.

[45]  Marco Presta,et al.  The zebrafish/tumor xenograft angiogenesis assay , 2007, Nature Protocols.

[46]  L. Zon,et al.  A Chemical Genetic Screen for Cell Cycle Inhibitors in Zebrafish Embryos , 2006, Chemical biology & drug design.

[47]  Nancy Hopkins,et al.  Identification of 315 genes essential for early zebrafish development. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[48]  S. Marino Medulloblastoma: developmental mechanisms out of control. , 2005, Trends in molecular medicine.

[49]  U. Moll,et al.  Classic and novel roles of p53: prospects for anticancer therapy. , 2007, Trends in molecular medicine.

[50]  Mary J. C. Hendrix,et al.  Reprogramming metastatic tumour cells with embryonic microenvironments , 2007, Nature Reviews Cancer.

[51]  J. Volff,et al.  Melanoma loss-of-function mutants in Xiphophorus caused by Xmrk-oncogene deletion and gene disruption by a transposable element. , 1999, Genetics.

[52]  R. Setlow,et al.  Animal model for ultraviolet radiation-induced melanoma: platyfish-swordtail hybrid. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[53]  L. Chin,et al.  Dual Inactivation of RB and p53 Pathways in RAS-Induced Melanomas , 2001, Molecular and Cellular Biology.

[54]  C. Brenner,et al.  p53 Activation by Knockdown Technologies , 2007, PLoS genetics.

[55]  L. Zon,et al.  The ‘definitive’ (and ‘primitive’) guide to zebrafish hematopoiesis , 2004, Oncogene.

[56]  Aravind Subramanian,et al.  A zebrafish bmyb mutation causes genome instability and increased cancer susceptibility. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[57]  L. Zon,et al.  Co-injection strategies to modify radiation sensitivity and tumor initiation in transgenic Zebrafish , 2008, Oncogene.

[58]  M. Kaufman,et al.  High-frequency developmental abnormalities in p53-deficient mice , 1995, Current Biology.

[59]  K. Kawakami Transposon tools and methods in zebrafish , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[60]  Hans C Clevers,et al.  Adenomatous polyposis coli‐deficient zebrafish are susceptible to digestive tract neoplasia , 2006, EMBO reports.

[61]  A. Schier,et al.  A genetic screen for mutations affecting embryogenesis in zebrafish. , 1996, Development.

[62]  L. Zon,et al.  BRAF Mutations Are Sufficient to Promote Nevi Formation and Cooperate with p53 in the Genesis of Melanoma , 2005, Current Biology.

[63]  M. Stanton DIETHYLNITROSAMINE-INDUCED HEPATIC DEGENERATION AND NEOPLASIA IN THE AQUARIUM FISH, BRACHYDANIO RERIO. , 1965, Journal of the National Cancer Institute.

[64]  M. Stratton,et al.  The BRAF gene is frequently mutated in malignant melanoma. , 2004, Journal of drugs in dermatology : JDD.

[65]  R. Fodde The APC gene in colorectal cancer. , 2002, European journal of cancer.

[66]  D. Ribatti,et al.  Mammalian tumor xenografts induce neovascularization in zebrafish embryos. , 2007, Cancer research.

[67]  J. Bourdon,et al.  p53 and its isoforms in cancer , 2007, British Journal of Cancer.

[68]  Pier Paolo Pandolfi,et al.  The Multiple Roles of PTEN in Tumor Suppression , 2000, Cell.

[69]  E. Cuppen,et al.  The Wnt/β-catenin pathway regulates cardiac valve formation , 2003, Nature.

[70]  L. Zon,et al.  Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis , 2007, Nature.

[71]  S. L. Gonias,et al.  High-resolution imaging of the dynamic tumor cell–vascular interface in transparent zebrafish , 2007, Proceedings of the National Academy of Sciences.

[72]  L. Zon,et al.  In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[73]  M. Herlyn,et al.  Embryogenesis meets tumorigenesis , 2006, Nature Medicine.

[74]  A. Amsterdam,et al.  A large-scale insertional mutagenesis screen in zebrafish. , 1999, Genes & development.

[75]  J. Piette,et al.  The Mdm2 gene of zebrafish (Danio rerio): preferential expression during development of neural and muscular tissues, and absence of tumor formation after overexpression of its cDNA during early embryogenesis. , 2000, Differentiation; research in biological diversity.

[76]  R. Marais,et al.  Melanoma biology and new targeted therapy , 2007, Nature.

[77]  Ralf Dahm,et al.  Zebrafish: A Practical Approach. Edited by C. NÜSSLEIN-VOLHARD and R. DAHM. Oxford University Press. 2002. 322 pages. ISBN 0 19 963808 X. Price £40.00 (paperback). ISBN 0 19 963809 8. Price £80.00 (hardback). , 2003 .

[78]  David M Langenau,et al.  Myc-Induced T Cell Leukemia in Transgenic Zebrafish , 2003, Science.

[79]  M. Bibikova,et al.  Efficient Gene Targeting in Drosophila With Zinc-Finger Nucleases , 2006, Genetics.

[80]  M. Hendrix,et al.  Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness , 2006, Nature Medicine.

[81]  O. Rath,et al.  MAP kinase signalling pathways in cancer , 2007, Oncogene.

[82]  S. Kridel,et al.  Identification and biological evaluation of a novel and potent small molecule radiation sensitizer via an unbiased screen of a chemical library. , 2007, Cancer research.

[83]  J. Freeman,et al.  A mutation in separase causes genome instability and increased susceptibility to epithelial cancer. , 2007, Genes & development.

[84]  H. Clevers,et al.  Wnt signalling in stem cells and cancer , 2005, Nature.

[85]  L. Zon,et al.  Transparent adult zebrafish as a tool for in vivo transplantation analysis. , 2008, Cell stem cell.

[86]  G. Streisinger,et al.  Production of clones of homozygous diploid zebra fish (Brachydanio rerio) , 1981, Nature.

[87]  A. Look,et al.  Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[88]  James F Amatruda,et al.  Zebrafish as a cancer model system. , 2002, Cancer cell.

[89]  Y. Liou,et al.  Liver‐specific expression of p53‐negative regulator mdm2 leads to growth retardation and fragile liver in zebrafish , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[90]  K. Cheng,et al.  Zebrafish Genomic Instability Mutants and Cancer Susceptibility , 2006, Genetics.

[91]  Lawrence A. Donehower,et al.  Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53 , 1995, Nature.

[92]  G. Streisinger,et al.  Clonal origins of cells in the pigmented retina of the zebrafish eye. , 1989, Developmental biology.

[93]  W. Clark,et al.  Early melanoma. Histologic terms. , 1991, The American Journal of dermatopathology.

[94]  Karen H. Vousden,et al.  p53 in health and disease , 2007, Nature Reviews Molecular Cell Biology.

[95]  J. Hendricks,et al.  Neoplasia in Zebrafish (Danio rerio) Treated with 7,12-Diniethylbenz[a]anthracene by Two Exposure Routes at Different Developmental Stages , 2000, Toxicologic pathology.

[96]  R. Nairn,et al.  A CDKN2-like polymorphism in Xiphophorus LG V is associated with UV-B-induced melanoma formation in platyfish-swordtail hybrids. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[97]  M. Schartl,et al.  Novel putative receptor tyrosine kinase encoded by the melanoma-inducing Tu locus in Xiphophorus , 1989, Nature.

[98]  M. Condron,et al.  Hematopoietic perturbation in zebrafish expressing a tel-jak2a fusion. , 2005, Experimental hematology.

[99]  D. Langenau,et al.  Making waves in cancer research: new models in the zebrafish. , 2005, BioTechniques.

[100]  M. Hendrix,et al.  The fate of human malignant melanoma cells transplanted into zebrafish embryos: Assessment of migration and cell division in the absence of tumor formation , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[101]  M. Schartl,et al.  From Mendelian to molecular genetics: the Xiphophorus melanoma model. , 2006, Trends in genetics : TIG.

[102]  Teresa Palomero,et al.  Suppression of apoptosis by bcl-2 overexpression in lymphoid cells of transgenic zebrafish. , 2005, Blood.

[103]  Chuanshu Huang,et al.  VEGF is upregulated by hypoxia-induced mitogenic factor via the PI-3K/Akt-NF-κB signaling pathway , 2006, Respiratory research.

[104]  L. Zon,et al.  The art and design of genetic screens: zebrafish , 2001, Nature Reviews Genetics.

[105]  W. Fu,et al.  Temozolomide-mediated radiosensitization of human glioma cells in a zebrafish embryonic system. , 2008, Cancer research.

[106]  L. Chin,et al.  The INK4a/ARF locus and melanoma , 2003, Oncogene.

[107]  A. Amsterdam,et al.  DTL/CDT2 is essential for both CDT1 regulation and the early G2/M checkpoint. , 2006, Genes & development.

[108]  L. Strong,et al.  Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. , 1990, Science.

[109]  N. Hayward,et al.  Pathways to melanoma development: lessons from the mouse. , 2002, The Journal of investigative dermatology.

[110]  L. Zon,et al.  The use of zebrafish to understand immunity. , 2004, Immunity.

[111]  Melissa Hardy,et al.  The Tol2kit: A multisite gateway‐based construction kit for Tol2 transposon transgenesis constructs , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[112]  K. Liang,et al.  CXCR4/CXCL12 axis promotes VEGF-mediated tumor angiogenesis through Akt signaling pathway. , 2007, Biochemical and biophysical research communications.

[113]  F. Anders,et al.  Contributions of the Gordon-Kosswig melanoma system to the present concept of neoplasia. , 1991, Pigment cell research.

[114]  A. Look,et al.  Targeted Expression of Human MYCN Selectively Causes Pancreatic Neuroendocrine Tumors in Transgenic Zebrafish , 2004, Cancer Research.

[115]  M. Hendrix,et al.  Exploiting the Convergence of Embryonic and Tumorigenic Signaling Pathways to Develop New Therapeutic Targets , 2007, Stem Cell Reviews.

[116]  T. Jacks Lessons from thep53 mutant mouse , 2005, Journal of Cancer Research and Clinical Oncology.

[117]  M. Schartl,et al.  Localization of a CDKN2 gene in linkage group V of Xiphophorus fishes defines it as a candidate for the DIFF tumor suppressor , 1998, Genes, chromosomes & cancer.

[118]  M. Schartl,et al.  The Xmrk receptor tyrosine kinase is activated in Xiphophorus malignant melanoma. , 1992, The EMBO journal.

[119]  J. Wood,et al.  Dissection of angiogenic signaling in zebrafish using a chemical genetic approach. , 2002, Cancer cell.

[120]  J. Hendricks,et al.  Neoplasia in Zebrafish (Danio rerio) Treated with N-methyl-N'nitro-N-nitrosoguanidine by Three Exposure Routes at ifferent Developmental Stages , 2000, Toxicologic pathology.

[121]  Jeffrey C. Miller,et al.  Highly efficient endogenous human gene correction using designed zinc-finger nucleases , 2005, Nature.

[122]  T. Hocking,et al.  Heritable Targeted Gene Disruption in Zebrafish Using Designed Zinc Finger Nucleases , 2008, Nature Biotechnology.

[123]  H. Tsai,et al.  TEL-AML1 transgenic zebrafish model of precursor B cell acute lymphoblastic leukemia , 2006, Proceedings of the National Academy of Sciences.

[124]  A. Nicholson,et al.  Mutations of the BRAF gene in human cancer , 2002, Nature.

[125]  J. Sebolt-Leopold MEK inhibitors: a therapeutic approach to targeting the Ras-MAP kinase pathway in tumors. , 2004, Current pharmaceutical design.

[126]  G. Robertson,et al.  Ptena and ptenb genes play distinct roles in zebrafish embryogenesis , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[127]  K. Kawakami,et al.  A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. , 2004, Developmental cell.

[128]  Kathryn E. Crosier,et al.  Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. , 2002, Development.

[129]  Wolfram Goessling,et al.  Ultrasound biomicroscopy permits in vivo characterization of zebrafish liver tumors , 2007, Nature Methods.

[130]  S. Revskoy,et al.  Transplantable tumor lines generated in clonal zebrafish. , 2006, Cancer research.

[131]  L. Zon,et al.  Effects of RAS on the genesis of embryonal rhabdomyosarcoma. , 2007, Genes & development.

[132]  Zhenhai Zhang,et al.  Loss of function of def selectively up-regulates Delta113p53 expression to arrest expansion growth of digestive organs in zebrafish. , 2005, Genes & development.