IBBO-LSSVM-based network anomaly intrusion detection
暂无分享,去创建一个
Owing to the variety and complexity of network intrusion, the traditional network anomaly intrusion detection model cannot accurately classify and identify the abnormal intrusion behaviour of the network, resulting in poor performance when detecting the network anomaly intrusion. In order to improve the performance of network intrusion detection, we propose a novel network anomaly intrusion detection method, by means of IBBO-LSSVM. In this paper, the least squares support vector machine is applied to model and analyse the network abnormal intrusion detection, which can capture the relationship between network anomaly intrusion types and its corresponding features. Then, an improved biogeography-based approach is applied to optimise the parameters of the network intrusion detection model. Finally, the model is simulated and evaluated on a standard network anomaly intrusion test database. The accuracy of the network anomaly intrusion detection for the proposed method is higher than 90%, demonstrating that the proposed approach is superior to the traditional methods.