Tangles of superpositions and the convex-roof extension

We discuss aspects of the convex-roof extension of multipartite entanglement measures, that is, $\mathrm{SL}(2,\mathbb{C})$ invariant tangles. We highlight two key concepts that contain valuable information about the tangle of a density matrix: the zero polytope is a convex set of density matrices with vanishing tangle whereas the convex characteristic curve readily provides a nontrivial lower bound for the convex roof and serves as a tool for constructing the convex roof outside the zero polytope. Both concepts are derived from the tangle for superpositions of the eigenstates of the density matrix. We illustrate their application by considering examples of density matrices for two-qubit and three-qubit states of rank 2, thereby pointing out both the power and the limitations of the concepts.

[1]  E. Schrödinger Probability relations between separated systems , 1936, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[3]  A. Uhlmann,et al.  Optimal decompositions of quantum states with respect to entropy , 1996 .

[4]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.

[5]  A. Uhlmann Entropy and Optimal Decompositions of States Relative to a Maximal Commutative Subalgebra , 1997, quant-ph/9704017.

[6]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[7]  G. Vidal On the characterization of entanglement , 1998 .

[8]  Charles H. Bennett,et al.  Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.

[9]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[10]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[11]  A. Uhlmann Fidelity and Concurrence of conjugated states , 1999, quant-ph/9909060.

[12]  B. Moor,et al.  Normal forms and entanglement measures for multipartite quantum states , 2001, quant-ph/0105090.

[13]  A complete set of covariants of the four qubit system , 2003, quant-ph/0304026.

[14]  M. S. Leifer,et al.  Measuring polynomial invariants of multiparty quantum states , 2003, quant-ph/0308008.

[15]  A. Osterloh,et al.  Constructing N-qubit entanglement monotones from antilinear operators (4 pages) , 2004, quant-ph/0410102.

[16]  A. Osterloh,et al.  ENTANGLEMENT MONOTONES AND MAXIMALLY ENTANGLED STATES IN MULTIPARTITE QUBIT SYSTEMS , 2005, quant-ph/0506073.

[17]  J. Smolin,et al.  Entanglement of superpositions. , 2005, Physical review letters.

[18]  A. Uhlmann,et al.  Entangled three-qubit states without concurrence and three-tangle. , 2006, Physical review letters.

[19]  N. Cerf,et al.  Tight bounds on the concurrence of quantum superpositions , 2007, 0705.4650.

[20]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[21]  A. Acín,et al.  Multipartite entanglement of superpositions , 2007, 0705.2521.

[22]  Zeng-Bing Chen,et al.  Bounds on the multipartite entanglement of superpositions , 2007, 0706.1598.

[23]  G. Gour Reexamination of entanglement of superpositions , 2007, 0707.1521.