Query by attention: visually searchable information maps

This paper explores how the design of information spaces might be grounded in knowledge of human visual processing, notably what kinds of visual selection are most efficient. Information maps spatially array graphical symbols representing items of information and their attributes. Ideally their users should be able to do query by attention: answer questions about the information quickly by controlling visual attention (i.e., through spatial selection and visual search), instead of manipulating an interface. I propose a preliminary method for designing visually searchable maps based on experimental results about what kinds of visual search are easy. The hope is that the resulting maps will better employ the perceptual capabilities of their viewers when they search. An example information map of recent movies illustrates the approach.

[1]  P. McLeod,et al.  Motion coherence and conjunction search: Implications for guided search theory , 1992, Perception & psychophysics.

[2]  Edward R. Tufte,et al.  Envisioning Information , 1990 .

[3]  Ben Shneiderman,et al.  Readings in information visualization - using vision to think , 1999 .

[4]  Harry Hochheiser Browsers with changing parts: a catalog explorer for Philip Glass' website , 2000, DIS '00.

[5]  Stuart K. Card,et al.  Visual information foraging in a focus + context visualization , 2001, CHI.

[6]  Ganesh S. Oak Information Visualization Introduction , 2022 .

[7]  Jock D. Mackinlay,et al.  The structure of the information visualization design space , 1997, Proceedings of VIZ '97: Visualization Conference, Information Visualization Symposium and Parallel Rendering Symposium.

[8]  Giuseppe Carenini,et al.  Generating Visual Arguments: a Media-independent Approach , 1998 .

[9]  Stephen G. Eick,et al.  Graphically Displaying Text , 1994 .

[10]  C. Ahlberg,et al.  IVEE : An Information Visualization & Exploration Environment , 1995 .

[11]  Christopher Ahlberg,et al.  IVEE: an Information Visualization and Exploration Environment , 1995, Proceedings of Visualization 1995 Conference.

[12]  R. Rosenholtz A simple saliency model predicts a number of motion popout phenomena , 1999, Vision Research.

[13]  H. Smallman,et al.  Segregation of basic colors in an information display. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[14]  P. McLeod,et al.  Reversing visual search asymmetries with conjunctions of movement and orientation , 1992 .

[15]  Ken Nakayama,et al.  Serial and parallel processing of visual feature conjunctions , 1986, Nature.

[16]  W. Hays Semiology of Graphics: Diagrams Networks Maps. , 1985 .

[17]  U. Neisser VISUAL SEARCH. , 1964, Scientific American.

[18]  Steven F. Roth,et al.  An interactive visual query environment for exploring data , 1997, UIST '97.

[19]  Ted Mihalisin,et al.  Visualizing multivariate functions, data, and distributions , 1991, IEEE Computer Graphics and Applications.

[20]  S. Palmer Vision Science : Photons to Phenomenology , 1999 .

[21]  P. McLeod,et al.  Filtering by movement in visual search. , 1991, Journal of experimental psychology. Human perception and performance.

[22]  H. Egeth,et al.  Searching for conjunctively defined targets. , 1984, Journal of experimental psychology. Human perception and performance.

[23]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[24]  Michael D'Zmura,et al.  Color in visual search , 1991, Vision Research.

[25]  Catherine Plaisant,et al.  Putting visualization to work: ProgramFinder for youth placement , 1997, CHI.

[26]  Jon Driver,et al.  Visual search for a conjunction of movement and form is parallel , 1988, Nature.

[27]  Ben Shneiderman,et al.  Visual Information Seeking: Tight Coupling of Dynamic Query Filters with Starfield Displays , 1994 .