Bulk universality for generalized Wigner matrices

[1]  T. Tao,et al.  Random covariance matrices: Universality of local statistics of eigenvalues , 2009, 0912.0966.

[2]  Jun Yin,et al.  Universality for generalized Wigner matrices with Bernoulli distribution , 2010, 1003.3813.

[3]  T. Tao,et al.  Random Matrices: Universality of Local Eigenvalue Statistics up to the Edge , 2009, 0908.1982.

[4]  Jun Yin,et al.  The local relaxation flow approach to universality of the local statistics for random matrices , 2009, 0911.3687.

[5]  Universality for certain Hermitian Wigner Matrices under weak moment conditions , 2009, 0910.4467.

[6]  H. Yau,et al.  Universality of random matrices and local relaxation flow , 2009, 0907.5605.

[7]  Terence Tao,et al.  Bulk universality for Wigner hermitian matrices with subexponential decay , 2009, 0906.4400.

[8]  P. Deift,et al.  Random Matrix Theory: Invariant Ensembles and Universality , 2009 .

[9]  T. Tao,et al.  Random matrices: Universality of local eigenvalue statistics , 2009, 0906.0510.

[10]  S. Péché,et al.  Bulk universality for Wigner matrices , 2009, 0905.4176.

[11]  H. Yau,et al.  Universality of Sine-Kernel for Wigner Matrices with a Small Gaussian Perturbation , 2009, 0905.2089.

[12]  Horng-Tzer Yau,et al.  Local Semicircle Law and Complete Delocalization for Wigner Random Matrices , 2008, 0803.0542.

[13]  Horng-Tzer Yau,et al.  Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices , 2007, 0711.1730.

[14]  H. Yau,et al.  Wegner estimate and level repulsion for Wigner random matrices , 2008, 0811.2591.

[15]  L. Pastur,et al.  Bulk Universality and Related Properties of Hermitian Matrix Models , 2007 .

[16]  S. Péché,et al.  Universality of local eigenvalue statistics for some sample covariance matrices , 2005 .

[17]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[18]  Van H. Vu,et al.  Spectral norm of random matrices , 2005, STOC '05.

[19]  O. Zeitouni,et al.  A CLT for a band matrix model , 2004, math/0412040.

[20]  N. Bingham Probability Theory: An Analytic View , 2002 .

[21]  T. Spencer,et al.  Density of States for Random Band Matrices , 2001, math-ph/0111047.

[22]  Alice Guionnet,et al.  Large deviations upper bounds and central limit theorems for non-commutative functionals of Gaussian large random matrices , 2002 .

[23]  K. Johansson Universality of the Local Spacing Distribution¶in Certain Ensembles of Hermitian Wigner Matrices , 2000, math-ph/0006020.

[24]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[25]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[26]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[27]  Pavel Bleher,et al.  Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.

[28]  S. Bobkov,et al.  Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities , 1999 .

[29]  É. Brézin,et al.  Spectral form factor in a random matrix theory , 1996, cond-mat/9608116.

[30]  S. Hikami,et al.  Correlations of nearby levels induced by a random potential , 1996 .

[31]  F. T. Wright,et al.  A Bound on Tail Probabilities for Quadratic Forms in Independent Random Variables , 1971 .

[32]  F. Dyson Correlations between eigenvalues of a random matrix , 1970 .

[33]  M. L. Mehta,et al.  ON THE DENSITY OF EIGENVALUES OF A RANDOM MATRIX , 1960 .

[34]  D. S. Jones The unsteady motion of a thin aerofoil in an incompressible fluid , 1957 .