Computational Geometry and Statistical Depth Measures

The computational geometry community has long recognized that there are many important and challenging problems that lie at the interface of geometry and statistics (e.g., Shamos, 1976; Bentley and Shamos, 1977). The relatively new notion of data depth for non-parametric multivariate data analysis is inherently geometric in nature, and therefore provides a fertile ground for expanded collaboration between the two communities. New developments and increased emphasis in the area of multivariate analysis heighten the need for new and efficient computational tools and for an enhanced partnership between statisticians and computational geometers.

[1]  David Eppstein,et al.  Approximating center points with iterated radon points , 1993, SCG '93.

[2]  J. Steele,et al.  Time- and Space-Efficient Algorithms for Least Median of Squares Regression , 1987 .

[3]  H. Oja Descriptive Statistics for Multivariate Distributions , 1983 .

[4]  Stefan Langerman,et al.  Computing a maximal depth point in the plane , 2000 .

[5]  Regina Y. Liu On a Notion of Data Depth Based on Random Simplices , 1990 .

[6]  Knut Verbarg,et al.  Approximate Center Points in Dense Point Sets , 1997, Inf. Process. Lett..

[7]  Michael Ian Shamos,et al.  A Problem in Multivariate Statistics: Algorithm, Data Structure and Applications. , 1978 .

[8]  P. Rousseeuw,et al.  Constructing the bivariate Tukey median , 1998 .

[9]  Ming Ouyang,et al.  On algorithms for simplicial depth , 2001, CCCG.

[10]  Theodore Johnson,et al.  Fast Computation of 2-Dimensional Depth Contours , 1998, KDD.

[11]  Peter Rousseeuw,et al.  Computing location depth and regression depth in higher dimensions , 1998, Stat. Comput..

[12]  David Eppstein,et al.  Approximating center points with iterative Radon points , 1996, Int. J. Comput. Geom. Appl..

[13]  Stefan Langerman,et al.  An optimal algorithm for hyperplane depth in the plane , 2000, SODA '00.

[14]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[15]  Bettina Speckmann,et al.  Efficient algorithms for maximum regression depth , 1999, SCG '99.

[16]  Thomas Ottmann,et al.  Algorithms for Reporting and Counting Geometric Intersections , 1979, IEEE Transactions on Computers.

[17]  Nabil H. Mustafa,et al.  Hardware-assisted computation of depth contours , 2002, SODA '02.

[18]  Avi Wigderson,et al.  Geometric medians , 1992, Discret. Math..

[19]  Godfried T. Toussaint,et al.  Algorithms for bivariate medians and a fermat-torricelli problem for lines , 2001, CCCG.

[20]  Joseph F. Traub,et al.  Algorithms and Complexity: New Directions and Recent Results , 1976 .

[21]  David Eppstein,et al.  Regression Depth and Center Points , 1998, Discret. Comput. Geom..

[22]  V. Barnett The Ordering of Multivariate Data , 1976 .

[23]  Komei Fukuda,et al.  Exact parallel algorithms for the location depth and the maximum feasible subsystem problems , 2004 .

[24]  Richard Cole,et al.  On k-Hulls and Related Problems , 1987, SIAM J. Comput..

[25]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[26]  Leonidas J. Guibas,et al.  Topologically sweeping an arrangement , 1986, STOC '86.

[27]  W. Eddy Convex Hull Peeling , 1982 .

[28]  Greg Aloupis,et al.  Lower Bounds for Computing Statistical Depth , 2002 .

[29]  R. Serfling,et al.  General notions of statistical depth function , 2000 .

[30]  KEVIN Q. BROWN Comments on “algorithms for reporting and counting geometric intersections” , 1981, IEEE Transactions on Computers.

[31]  Rephael Wenger,et al.  Hyperplane depth and nested simplices , 1998, CCCG.

[32]  Asish Mukhopadhyay,et al.  Computing a centerpoint of a finite planar set of points in linear time , 1993, SCG '93.

[33]  P. Rousseeuw,et al.  Bivariate location depth , 1996 .

[34]  P. Rousseeuw,et al.  High-dimensional computation of the deepest location , 2000 .

[35]  H. Edelsbrunner,et al.  Computing Least Median of Squares Regression Lines and Guided Topological Sweep , 1990 .

[36]  Samir Khuller,et al.  On a Triangle Counting Problem , 1990, Inf. Process. Lett..

[37]  Joan Antoni Sellarès,et al.  Efficient computation of location depth contours by methods of computational geometry , 2003, Stat. Comput..

[38]  Diane L. Souvaine,et al.  Topological Sweep in Degenerate Cases , 2002, ALENEX.

[39]  Stefan Langerman,et al.  Optimization in Arrangements , 2003, STACS.

[40]  Regina Y. Liu,et al.  Multivariate analysis by data depth: descriptive statistics, graphics and inference, (with discussion and a rejoinder by Liu and Singh) , 1999 .

[41]  David M. Mount,et al.  A practical approximation algorithm for the LMS line estimator , 1997, SODA '97.

[42]  Marshall W. Bern Computing the depth of a flat , 2001, SODA '01.

[43]  M. Shamos Geometry and statistics: problems at the interface , 1976 .

[44]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[45]  J. L. Hodges,et al.  A Bivariate Sign Test , 1955 .

[46]  Regina Y. Liu,et al.  Regression depth. Commentaries. Rejoinder , 1999 .

[47]  Kevin Q. Brown Geometric transforms for fast geometric algorithms , 1979 .

[48]  Joan Antoni Sellarès,et al.  Fast implementation of depth contours using topological sweep , 2001, SODA '01.

[49]  P. Rousseeuw,et al.  Computing depth contours of bivariate point clouds , 1996 .

[50]  J. Matou Sek,et al.  Computing the center of planar point sets , 1991 .

[51]  Diane L. Souvaine,et al.  Simplicial depth: An improved definition, analysis, and efficiency for the finite sample case , 2003, CCCG.