Thermal investigations on social insects

Social insects (honey- and bumblebees, wasps, hornets, ants and termites) are interesting in many aspects, among them the energetic advantages of social life and conquering of unfavourable territories. Own investigations and data from literature deal with the energy metabolism of these insects (except termites because of experimental difficulties), with locomotor activities, energy balances of foraging, energy saving by insulation of wasp nests com pared with the afford to construct the wooden envelope, bee cluster strategy for surviving at low temperatures, and rearing of brood.

[1]  I. Lamprecht,et al.  Microbiological and calorimetric investigations on the antimicrobial actions of different propolis extracts: an in vitro approach ☆ , 2004 .

[2]  E. Schmolz,et al.  Calorimetric investigations on the action of alarm pheromones in the hornet Vespa crabro , 2004 .

[3]  E. Schmolz,et al.  Calorimetric investigations on thermoregulation and growth of wax moth larvae Galleria mellonella , 1995 .

[4]  I. Lamprecht,et al.  Thermoanalytical investigations on paper covers of social wasps , 2000 .

[5]  K. Nagy FIELD METABOLIC RATE AND FOOD REQUIREMENT SCALING IN MAMMALS AND BIRDS , 1987 .

[6]  J. Harrison,et al.  African-European honeybee hybrids have low nonintermediate metabolic capacities , 1993, Nature.

[7]  B. Lowell,et al.  βAR Signaling Required for Diet-Induced Thermogenesis and Obesity Resistance , 2002, Science.

[8]  Jürgen Tautz,et al.  Hot spots in the bee hive , 2002, Naturwissenschaften.

[9]  I. Lamprecht,et al.  A poor man's calorimeter (PMC) for small animals , 1985 .

[10]  W. J. Mattson,et al.  Diet-Induced Thermogenesis in Insects: A Developing Concept in Nutritional Ecology , 2003 .

[11]  I. Lamprecht,et al.  Effect of the bee glue (propolis) on the calorimetrically measured metabolic rate and metamorphosis of the greater wax moth Galleria mellonella , 2004 .

[12]  THERMOREGULATION IN COLONIES OF VESPULA ARENARIA AND VESPULA MACULATA (HYMENOPTERA: VESPIDAE) UNDER NORMAL CONDITIONS AND UNDER COLD STRESS , 1974 .

[13]  M. Winston,et al.  Pheromone Communication in Social Insects , 1997 .

[14]  M. Hilker,et al.  Thermal Adaptations of the Leaf Beetle Chrysomela lapponica (Coleoptera: Chrysomelidae) to Different Climes of Central and Northern Europe , 2004 .

[15]  M. Dickinson,et al.  The scaling of carbon dioxide release and respiratory water loss in flying fruit flies (Drosophila spp.). , 2000, The Journal of experimental biology.

[16]  Flight of the honey bee , 2004, Journal of Comparative Physiology B.

[17]  T. Seeley,et al.  Interspecific Comparisons of Endothermy in Honey-Bees (APIS): Deviations from the Expected Size-Related Patterns , 1987 .

[18]  W. Nachtigall,et al.  Flight of the honey bee VII: metabolic power versus flight speed relation , 1995, Journal of Comparative Physiology B.

[19]  I. Lamprecht,et al.  Microcalorimetric and respirometric investigation of the effect of temperature on the antivarroa action of the natural bee product-propolis , 2003 .

[20]  Erna Mosebach-Pukowski Über die raupengesellschaften von Vanessa io und Vanessa urticae , 1937, Zeitschrift für Morphologie und Ökologie der Tiere.

[21]  Bernd Heinrich,et al.  The Hot-Blooded Insects , 2012, Springer Berlin Heidelberg.

[22]  P. V. W.-Worswick Comparative study of colony thermoregulation in the african honeybee, Apis mellifera adansonii latreille and the cape honeybee, Apis mellifera capensis escholtz , 1987 .

[23]  J. Ishay Thermoregulation by social wasps: behavior and pheromones. , 1973, Transactions of the New York Academy of Sciences.

[24]  P. A. Moritz,et al.  Bees as Superorganisms , 1992, Springer Berlin Heidelberg.

[25]  J. R. Coelho,et al.  Allometry of resting metabolic rate in cockroaches. , 1989, Comparative biochemistry and physiology. A, Comparative physiology.

[26]  I. Tobler,et al.  24‐h variation of vigilance in the cockroach Blaberus giganteus , 1992, Journal of sleep research.

[27]  J. Fewell,et al.  Achievement of Thermal Stability by Varying Metabolic Heat Production in Flying Honeybees , 1996, Science.

[28]  A method for continuous direct calorimetric measurements of energy metabolism in intact hornet (Vespa crabro) and honeybee (Apis mellifera) colonies , 1995 .

[29]  W. Kaiser Busy bees need rest, too , 1988, Journal of Comparative Physiology A.

[30]  R. Berger,et al.  Energy conservation and sleep , 1995, Behavioural Brain Research.

[31]  P. Schneider,et al.  EINFLUSS DER PARASITIERUNG DURCH DIE MILBE VARROA JACOBSONI OUD. AUF DAS SCHLUPFGEWICHT, DIE GEWICHTSENTWICKLUNG, DIE ENTWICKLUNG DER HYPOPHARYNXDRÜSEN UND DIE LEBENSDAUER VON APIS MELLIFERA L. , 1987 .

[32]  I. Lamprecht,et al.  The energy and nutritional demand of the parasitic life of the mite Varroa destructor , 2004 .

[33]  G. Newport XVII. On the temperature of insects, and its connexion with the functions of respiration and circulation in this class of invertebrated animals , 1837, Philosophical Transactions of the Royal Society of London.

[34]  C. Everson Functional consequences of sustained sleep deprivation in the rat , 1995, Behavioural Brain Research.

[35]  I. Lamprecht,et al.  Calorimetric measurements of energy contents and heat production rates during development of the wax moth Galleria mellonella , 1999 .

[36]  A. Kittel Körpergrösse, Körperzeiten und Energiebilanz , 2004, Zeitschrift für vergleichende Physiologie.

[37]  M. Rockstein The physiology of Insecta , 1964 .

[39]  D. Gibo,et al.  THERMOREGULATION IN COLONIES OF VESPULA ARENARIA AND VESPULA MACULATA (HYMENOPTERA: VESPIDAE): III. HEAT PRODUCTION IN QUEEN NESTS , 1977, The Canadian Entomologist.

[40]  I. Lamprecht,et al.  Energy Metabolism of European (Apis Mellifera Carnica) and Egyptian (A. M. Lamarckii) Honeybees , 2001 .

[41]  R. Howe Temperature effects on embryonic development in insects. , 1967, Annual review of entomology.

[42]  I. Lamprecht,et al.  The varroacidal action of propolis: a laboratory assay , 2002 .

[43]  N. Koeniger,et al.  2-Methyl-3-butene-2-ol, a major component of the alarm pheromone of the hornet Vespa crabro , 1984, Naturwissenschaften.

[44]  M. Lemke,et al.  A model for heat production and thermoregulation in winter clusters of honey bees using differential heat conduction equations , 1990 .

[45]  Calorimetric investigations on metabolic rates and thermoregulation of sleeping honeybees (Apis mellifera carnica) , 2002 .

[46]  Herman Buelens,et al.  Hypoxia-Controlled Winter Metabolism in Honeybees (Apis mellifera) , 1997 .

[47]  S. Yamane,et al.  HEAT PRODUCTION BY THE FOUNDRESS OF VESPA SIMILLIMA, WITH DESCRIPTION OF ITS EMBRYO NEST (HYMENOPTERA : VESPIDAE) , 1980 .

[48]  I. Lamprecht,et al.  Temperature Distribution and Calorimetric Determination of Heat Production in the Nest of the Wood Ant, Formica Polyctena (Hymenoptera, Formicidae) , 1980 .

[49]  Karl Crailsheim,et al.  Glucose utilization during flight of honeybee (Apis mellifera) workers, drones and queens , 1993 .

[50]  J. Bell The Heat Production and Oxygen Consumption of Pupae of Galleria mellonella at Different Constant Temperatures , 1940, Physiological Zoology.

[51]  Professor Dr. Friedrich Ruttner Biogeography and Taxonomy of Honeybees , 1987, Springer Berlin Heidelberg.

[52]  S. Yamane,et al.  Biology of the Vespine Wasps , 1990 .

[53]  J. Tautz,et al.  Behavioral performance in adult honey bees is influenced by the temperature experienced during their pupal development , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[54]  R. Drucker-Colín,et al.  The function of sleep is to regulate brain excitability in order to satisfy the requirements imposed by waking , 1995, Behavioural Brain Research.

[55]  Richard A. Brown Muramyl peptides and the functions of sleep , 1995, Behavioural Brain Research.

[56]  F. Sehnal,et al.  Larval growth, food consumption, and utilization of dietary protein and energy in Galleria mellonella , 1989 .

[57]  S. Martin Nest thermoregulation in Vespa simillima, V.tropica and V.analis , 1990 .

[58]  Takeshi Igarashi,et al.  Unusual thermal defence by a honeybee against mass attack by hornets , 1995, Nature.

[59]  F. T. Jung The Fire of Life , 1962 .

[60]  G. Tononi,et al.  Correlates of sleep and waking in Drosophila melanogaster. , 2000, Science.

[61]  D. Stavenga,et al.  A THREE-COMPARTMENT MODEL DESCRIBING TEMPERATURE CHANGES IN TETHERED FLYING BLOWFLIES , 1993 .

[62]  I. Lamprecht,et al.  Calorimetric investigations on activity states and development of holometabolous insects , 2000 .

[63]  I. Lamprecht,et al.  Microcalorimetric investigation of the action of propolis on Varroa destructor mites , 2002 .

[64]  I. Lamprecht,et al.  Thermal investigations of a honey bee colony: thermoregulation of the hive during summer and winter and heat production of members of different bee castes , 1989, Journal of Comparative Physiology B.

[65]  J. Frouz The effect of nest moisture on daily temperature regime in the nests of Formica polyctena wood ants , 2000, Insectes Sociaux.

[66]  K. E. Machin,et al.  Oxygen consumption of bumblebees in forward flight , 1990, Nature.

[67]  E. Bursell ENVIRONMENTAL ASPECTS – TEMPERATURE , 1974 .

[68]  Carlyle T. Smith,et al.  Sleep states and memory processes , 1995, Behavioural Brain Research.

[69]  I. Lamprecht,et al.  Direct calorimetric measurement of heat production rates in flying hornets (Vespa crabro; Hymenoptera) , 1999 .

[70]  Alarmpheromone bei sozialen Insekten , 1999 .

[71]  M. Sasaki,et al.  Insect signalling: Components of giant hornet alarm pheromone , 2003, Nature.

[72]  M. Winston The Biology of the Honey Bee , 1987 .

[73]  F. Sehnal,et al.  Linkage between diet humidity, metabolic water production and heat dissipation in the larvae of Galleria mellonella , 1990 .

[74]  B. W. Sweeney,et al.  POPULATION SYNCHRONY IN MAYFLIES: A PREDATOR SATIATION HYPOTHESIS , 1982, Evolution; international journal of organic evolution.