A stopping criterion for the conjugate gradient algorithm in a finite element method framework

SummaryThe Conjugate Gradient method has always been successfully used in solving the symmetric and positive definite systems obtained by the finite element approximation of self-adjoint elliptic partial differential equations. Taking into account recent results [13, 19, 20, 22] which make it possible to approximate the energy norm of the error during the conjugate gradient iterative process, we adapt the stopping criterion introduced in [3]. Moreover, we show that the use of efficient preconditioners does not require to change the energy norm used by the stopping criterion. Finally, we present the results of several numerical tests that experimentally validate the effectiveness of our stopping criterion.

[1]  Serena Morigi,et al.  An iterative method with error estimators , 2001 .

[2]  MARIO ARIOLI,et al.  A Backward Error Analysis of a Null Space Algorithm in Sparse Quadratic Programming , 2001, SIAM J. Matrix Anal. Appl..

[3]  Ivo Babuška,et al.  Computer‐based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's, and the elasticity equations , 1996 .

[4]  Iain S. Duff,et al.  Stopping Criteria for Iterative Solvers , 1992, SIAM J. Matrix Anal. Appl..

[5]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[6]  Gérard Meurant The computation of bounds for the norm of the error in the conjugate gradient algorithm , 2004, Numerical Algorithms.

[7]  I. Babuska Error-bounds for finite element method , 1971 .

[8]  Owe Axelsson,et al.  Error norm estimation and stopping criteria in preconditioned conjugate gradient iterations , 2001, Numer. Linear Algebra Appl..

[9]  Serena Morigi,et al.  Computable error bounds and estimates for the conjugate gradient method , 2000, Numerical Algorithms.

[10]  G. Golub,et al.  Matrices, moments and quadrature II; How to compute the norm of the error in iterative methods , 1997 .

[11]  Z. Strakos,et al.  On error estimation in the conjugate gradient method and why it works in finite precision computations. , 2002 .

[12]  P. Grisvard,et al.  Singularities in Boundary Value Problems and Exact Controllability of Hyperbolic Systems , 1992 .

[13]  G. Meurant Computer Solution of Large Linear Systems , 1999 .

[14]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[15]  Gérard Meurant,et al.  Numerical experiments in computing bounds for the norm of the error in the preconditioned conjugate gradient algorithm , 1999, Numerical Algorithms.

[16]  T. Dupont,et al.  Polynomial approximation of functions in Sobolev spaces , 1980 .

[17]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[18]  M. Arioli,et al.  Stopping criteria for iterative methods:¶applications to PDE's , 2001 .

[19]  Gene H. Golub,et al.  Estimates in quadratic formulas , 1994, Numerical Algorithms.

[20]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[21]  Paul E. Saylor,et al.  The Role of the Inner Product in Stopping Criteria for Conjugate Gradient Iterations , 2001 .

[22]  Ivo Babugka,et al.  A Finite Element Scheme for Domains with Corners , 2022 .

[23]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.