INVERSE STABLE SUBORDINATORS.

The inverse stable subordinator provides a probability model for time-fractional differential equations, and leads to explicit solution formulae. This paper reviews properties of the inverse stable subordinator, and applications to a variety of problems in mathematics and physics. Several different governing equations for the inverse stable subordinator have been proposed in the literature. This paper also shows how these equations can be reconciled.

[1]  Marjorie G. Hahn,et al.  Fokker-Planck-Kolmogorov equations associated with time-changed fractional Brownian motion , 2010, 1002.1494.

[2]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[3]  David A. Benson,et al.  A simple and efficient random walk solution of multi-rate mobile/immobile mass transport equations , 2009 .

[4]  S. D. Eidelman,et al.  Cauchy problem for evolution equations of a fractional order , 2004 .

[5]  Roberto Mecca,et al.  Fractional-order diffusion for image reconstruction , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[6]  P. Hall ONE‐DIMENSIONAL STABLE DISTRIBUTIONS (Translations of Mathematical Monographs 65) , 1987 .

[7]  V. Zolotarev,et al.  Chance and Stability, Stable Distributions and Their Applications , 1999 .

[8]  Melvin Lax,et al.  Stochastic Transport in a Disordered Solid. I. Theory , 1973 .

[9]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[10]  Yuji Kasahara,et al.  Limit Theorems of Occupation Times for Markov Processes , 1976 .

[11]  N. Jacob,et al.  Pseudo Differential Operators and Markov Processes: Volume I: Fourier Analysis and Semigroups , 2001 .

[12]  Wojbor A. Woyczyński,et al.  Models of anomalous diffusion: the subdiffusive case , 2005 .

[13]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[14]  E. Montroll,et al.  Random Walks on Lattices. II , 1965 .

[15]  Mark M. Meerschaert,et al.  Fractional Cauchy problems on bounded domains , 2008, 0802.0673.

[16]  Mark M. Meerschaert,et al.  Limit theorems for continuous-time random walks with infinite mean waiting times , 2004, Journal of Applied Probability.

[17]  Michael Holst,et al.  Green's Functions and Boundary Value Problems: Stakgold/Green's Functions , 2011 .

[18]  E. Montroll Random walks on lattices , 1969 .

[19]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[20]  Mark M. Meerschaert,et al.  Limit theorem for continuous-time random walks with two time scales , 2004, Journal of Applied Probability.

[21]  Takashi Komatsu,et al.  Pseudo-differential operators and Markov processes , 1984 .

[22]  A. Einstein On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart , 1905 .

[23]  V. Zolotarev One-dimensional stable distributions , 1986 .

[24]  W. Arendt Vector-valued laplace transforms and cauchy problems , 2002 .

[25]  Alexander I. Saichev,et al.  Fractional kinetic equations: solutions and applications. , 1997, Chaos.

[26]  Vassili N. Kolokoltsov,et al.  Generalized Continuous-Time Random Walks (CTRW), Subordination by Hitting Times and Fractional Dynamics , 2007, 0706.1928.

[27]  F. Mainardi,et al.  Fractals and fractional calculus in continuum mechanics , 1997 .

[28]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[29]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[30]  David A. Benson,et al.  On Using Random Walks to Solve the Space-Fractional Advection-Dispersion Equations , 2006 .

[31]  Mark M. Meerschaert,et al.  Triangular array limits for continuous time random walks , 2008 .

[32]  O. Agrawal,et al.  Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering , 2007 .

[33]  Alexander I. Saichev,et al.  Distributions in the physical and engineering sciences , 1997 .

[34]  Barkai,et al.  From continuous time random walks to the fractional fokker-planck equation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  Wojbor A. Woyczyński,et al.  Distributional and fractal calculus, integral transforms and wavelets , 1996 .

[36]  S. Janson Stable distributions , 2011, 1112.0220.

[37]  Enrico Scalas Five Years of Continuous-time Random Walks in Econophysics , 2005 .

[38]  Josep Perelló,et al.  The continuous time random walk formalism in financial markets , 2006 .

[39]  George M. Zaslavsky,et al.  Fractional kinetic equation for Hamiltonian chaos , 1994 .

[40]  I. Podlubny Fractional differential equations , 1998 .

[41]  Marcin Magdziarz,et al.  Competition between subdiffusion and Lévy flights: a Monte Carlo approach. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Dongjin Zhu,et al.  Generalized continuous time random walks and Hermite processes , 2015 .

[43]  W. Schneider,et al.  Fractional diffusion and wave equations , 1989 .

[44]  J. Joseph,et al.  Fourier transforms , 2012 .

[45]  Melvin Lax,et al.  Stochastic Transport in a Disordered Solid. II. Impurity Conduction , 1973 .

[46]  M. Dentz,et al.  Modeling non‐Fickian transport in geological formations as a continuous time random walk , 2006 .

[47]  O. Agrawal,et al.  Advances in Fractional Calculus , 2007 .

[48]  X. Sanchez‐Vila,et al.  Representative hydraulic conductivities in saturated groundwater flow , 2006 .

[49]  M. Meerschaert,et al.  Stochastic Models for Fractional Calculus , 2011 .

[50]  Francesco Mainardi,et al.  On Mittag-Leffler-type functions in fractional evolution processes , 2000 .

[51]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[52]  R. Durrett Probability: Theory and Examples , 1993 .

[53]  Mark M. Meerschaert,et al.  STOCHASTIC SOLUTIONS FOR FRACTIONAL CAUCHY PROBLEMS , 2003 .

[54]  Ralf Metzler,et al.  Deriving fractional Fokker-Planck equations from a generalised master equation , 1999 .

[55]  R. Nigmatullin The Realization of the Generalized Transfer Equation in a Medium with Fractal Geometry , 1986, January 1.

[56]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[57]  M. Meerschaert,et al.  Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice , 2001 .