The Gemini Deep Deep Survey. II. Metals in Star-forming Galaxies at Redshift 1.3 < z < 2*

The goal of the Gemini Deep Deep Survey (GDDS) is to study an unbiased sample of K 1.3. The selected objects have colors typical of irregular and Sbc galaxies. Strong [O II] emission indicates high star formation activity in the H II regions (star formation rate ~13-106 M☉ yr-1). The high signal-to-noise ratio composite spectrum shows strong ISM Mg II and Fe II absorption, together with weak Mn II and Mg I lines. The Fe II column density, derived using the curve of growth analysis, is log N = 15.54. This is considerably larger than typical values found in damped Lyα systems (DLAs) along QSO sight lines, where only 10 of 87 (~11%) have log N ≥ 15.2. High Fe II column densities are observed in the z = 2.72 Lyman break galaxy cB58 (log N 15.25) and in gamma-ray burst host galaxies (log N ~ 14.8-15.9). Given our measured Fe II column density and assuming a moderate iron dust depletion (δFe ~ 1 dex), we derive an optical dust extinction of AV ~ 0.6. If the H I column density is log N 0.2. The high completeness of the GDDS sample implies that these results are typical of star-forming galaxies in the 1 < z < 2 redshift range, an epoch that has heretofore been particularly challenging for observational programs.

[1]  D. Calzetti The Dust Opacity of Star‐forming Galaxies , 2001, astro-ph/0109035.

[2]  Limin Lu,et al.  Abundances at High Redshifts: The Chemical Enrichment History of Damped Lyα Galaxies , 1996, astro-ph/9606044.

[3]  K. Lanzetta,et al.  Damped Lyman-Alpha Absorption by Disk Galaxies with Large Redshifts. IV. More Intermediate-Resolution Spectroscopy , 1989 .

[4]  Robert C. Kennicutt,et al.  The Integrated spectra of nearby galaxies: General properties and emission line spectra , 1992 .

[5]  Henry C. Ferguson,et al.  The Evolution of the Global Stellar Mass Density at 0 < z < 3 , 2002, astro-ph/0212242.

[6]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[7]  D. York,et al.  Interstellar Abundances in the Magellanic Clouds. I. GHRS Observations of the Small Magellanic Cloud Star Sk 108 , 1997 .

[8]  L. Dunne,et al.  A Census of Metals at High and Low Redshift and the Connection Between Submillimetre Sources and Spheroid Formation , 2002, astro-ph/0210260.

[9]  P. Padovani,et al.  The Lyα Forest of a Lyman Break Galaxy: Very Large Telescope Spectra of MS 1512–cB58 at z = 2.724* , 2001, astro-ph/0111125.

[10]  S. Djorgovski,et al.  The afterglow, redshift and extreme energetics of the γ-ray burst of 23 January 1999 , 1999, Nature.

[11]  Star formation in emission-line galaxies between redshifts of 0.8 and 1.6 , 2002, astro-ph/0208551.

[12]  G. Zamorani,et al.  The K20 survey - I. Disentangling old and dusty star-forming galaxies in the ERO population , 2001 .

[13]  M. Giavalisco,et al.  Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.

[14]  et al,et al.  GRB010222: afterglow emission from a rapidly decelerating shock ⋆ , 2001 .

[15]  David Burstein,et al.  Old stellar populations. II. an analysis of K-giant spectra. , 1985 .

[16]  I. Hook,et al.  The corals survey I: new estimates of the number density and gas content of damped lyman alpha systems free from dust bias , 2001, astro-ph/0109205.

[17]  I. Hook,et al.  Gemini-north multiobject spectrograph integration, test, and commissioning , 2003, SPIE Astronomical Telescopes + Instrumentation.

[18]  S. R. Kulkarni,et al.  Keck Spectroscopy and Hubble Space Telescope Imaging of GRB 000926: Probing a Host Galaxy at z = 2.038 , 2003 .

[19]  S. R. Kulkarni,et al.  Optical Spectropolarimetry of the GRB 020813 Afterglow , 2002, astro-ph/0212554.

[20]  C. Leitherer,et al.  B Stars as a Diagnostic of Star Formation at Low and High Redshift , 1999, astro-ph/9909513.

[21]  Lisa J. Storrie-Lombardi,et al.  Surveys for z > 3 Damped Lyα Absorption Systems: The Evolution of Neutral Gas , 2000 .

[22]  H. Nicklas,et al.  VLT Spectroscopy of GRB 990510 and GRB 990712: Probing the Faint and Bright Ends of the Gamma-Ray Burst Host Galaxy Population , 2000, astro-ph/0009025.

[23]  D. Fabricant,et al.  [O II] As a Tracer of Current Star Formation , 2000, astro-ph/0012485.

[24]  Karl Glazebrook,et al.  Measurement of the star formation rate from Hα in field galaxies at z=1 , 1998 .

[25]  E. Jenkins,et al.  The analysis of ensembles of moderately saturated interstellar lines , 1986 .

[26]  S. M. Fall,et al.  Heavy-Element Abundances and Dust Depletions in the Host Galaxies of Three Gamma-Ray Bursts , 2002, astro-ph/0203154.

[27]  K. Glazebrook,et al.  Microslit Nod‐Shuffle Spectroscopy: A Technique for Achieving Very High Densities of Spectra , 2000, astro-ph/0011104.

[28]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[29]  M. Giavalisco,et al.  Infrared Observations of Nebular Emission Lines from Galaxies at z ≃ 3 , 1998, astro-ph/9806219.

[30]  A. Cimatti,et al.  The K20 survey. V. The evolution of the near-IR Luminosity Function , 2003, astro-ph/0302599.

[31]  Pasadena,et al.  The evolution of ΩHI and the epoch of formation of damped Lyman α absorbers , 2001, astro-ph/0107045.

[32]  C. Leitherer,et al.  The Ultraviolet Spectroscopic Properties of Local Starbursts: Implications at High Redshift , 1998, astro-ph/9803185.

[33]  S. Vogt,et al.  The Physical Conditions of Intermediate-Redshift Mg II Absorbing Clouds from Voigt Profile Analysis , 2002, astro-ph/0210196.

[34]  Jonathan C. McDowell,et al.  The Redshift of the Optical Transient Associated with GRB 010222 , 2001, astro-ph/0103081.

[35]  R. Nichol,et al.  Average Spectra of Massive Galaxies in the Sloan Digital Sky Survey , 2002, astro-ph/0212087.

[36]  S. R. Kulkarni,et al.  The Observed Offset Distribution of Gamma-Ray Bursts from Their Host Galaxies: A Robust Clue to the Nature of the Progenitors , 2000, astro-ph/0010176.

[37]  D. Hunter,et al.  Star-formation rates and forbidden O II emission in blue galaxies , 1989 .

[38]  Kenneth R. Sembach,et al.  INTERSTELLAR ABUNDANCES FROM ABSORPTION-LINE OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE , 1996 .

[39]  S. R. Kulkarni,et al.  Time-dependent Optical Spectroscopy of GRB 010222: Clues to the Gamma-Ray Burst Environment , 2002, astro-ph/0207009.

[40]  A. Fontana,et al.  The Assembly of Massive Galaxies from Near-Infrared Observations of the Hubble Deep Field-South , 2003, astro-ph/0307332.

[41]  Evolutionary Stellar Population Synthesis at 2 Å Spectral Resolution , 1999 .

[42]  S. Djorgovski,et al.  The afterglow, the redshift, and the extreme energetics of the gamma-ray burst 990123 , 1999, astro-ph/9902272.

[43]  B. Savage,et al.  The Gas and Dust Abundances of Diffuse Halo Clouds in the Milky Way , 1996 .

[44]  R. Rich,et al.  Constraints on the Origin of Manganese from the Composition of the Sagittarius Dwarf Spheroidal Galaxy and the Galactic Bulge , 2003 .

[45]  J. Prochaska,et al.  Chemical Abundances of the Damped Lyα Systems at z > 1.5 , 1998, astro-ph/9810381.

[46]  Jason X. Prochaska,et al.  The Age-Metallicity Relation of the Universe in Neutral Gas: The First 100 Damped Lyα Systems , 2003 .

[47]  C. Steidel A high-redshift extension of the survey for C IV absorption in the spectra of QSOs - The redshift evolution of the heavy element absorbers , 1990 .

[48]  E. Rol,et al.  The afterglow of the short/intermediate-duration gamma-ray burst GRB 000301C: A jet at z = 2:04 ?;??;??? , 2000 .

[49]  H. Kobulnicky,et al.  Near-Infrared Spectroscopy of Two Galaxies at z = 2.3 and z = 2.9: New Probes of Chemical and Dynamical Evolution at High Redshift , 2000, astro-ph/0008242.

[50]  B. Savage,et al.  A survey of interstellar H I from L-alpha absorption measurements. II , 1978 .

[51]  C. Steidel,et al.  New Observations of the Interstellar Medium in the Lyman Break Galaxy MS 1512–cB58 , 2001, astro-ph/0110637.

[52]  Caltech,et al.  The Las Campanas Infrared Survey – II. Photometric redshifts, comparison with models and clustering evolution , 2001, astro-ph/0108182.

[53]  C. Leitherer,et al.  FUSE Observations of Outflowing O VI in the Dwarf Starburst Galaxy NGC 1705 , 2001, astro-ph/0102283.

[54]  Q. Konopacky,et al.  A Hubble Space Telescope Search for Lyman Continuum Emission from Galaxies at 1.1 < z < 1.4 , 2003, astro-ph/0310237.

[55]  M. Fukugita,et al.  THE COSMIC BARYON BUDGET , 1997, astro-ph/9712020.

[56]  C. Steidel,et al.  Mg II absorption in the spectra of 103 QSOs : implications for the evolution of gas in high-redshift galaxies , 1992 .

[57]  The DEEP Groth Strip Survey. VII. The Metallicity of Field Galaxies at 0.26 < z < 0.82 and the Evolution of the Luminosity-Metallicity Relation , 2003, astro-ph/0310346.

[58]  Max Pettini,et al.  The Metallicity of High-Redshift Galaxies: The Abundance of Zinc in 34 Damped Lyα Systems from z = 0.7 to 3.4 , 1997 .

[59]  A. Cimatti,et al.  The K20 survey - III. Photometric and spectroscopic properties of the sample , 2002, astro-ph/0206168.

[60]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[61]  S. E. Persson,et al.  THE LAS CAMPANAS INFRARED SURVEY. III. THE H-BAND IMAGING SURVEY AND THE NEAR-INFRARED AND OPTICAL PHOTOMETRIC CATALOGS , 2001, astro-ph/0108171.

[62]  Michael Hauser,et al.  The Extragalactic Infrared Background and Its Cosmological Implications: IAU Symposium 204 , 2001 .

[63]  C. Leitherer,et al.  Abundances in the Neutral Interstellar Medium of I Zw 18 from Far Ultraviolet Spectroscopic Explorer Observations , 2003 .

[64]  C. Carollo,et al.  The Metallicities of Star-forming Galaxies at Intermediate Redshifts 0.47 < z < 0.92 , 2003, astro-ph/0307300.

[65]  J. Prochaska,et al.  The UCSD HIRES/Keck I Damped Lyα Abundance Database. I. The Data , 2001, astro-ph/0110350.

[66]  D. York,et al.  Interstellar Abundances in the Magellanic Clouds. II. The Line of Sight to SN 1987A in the Large Magellanic Cloud , 1999 .

[67]  A Quadruple-Phase Strong Mg II Absorber at z ~ 0.9902 toward PG 1634+706 , 2003, astro-ph/0302298.

[68]  D. Turnshek,et al.  Discovery of DampedLyα Systems at Redshifts Less than 1.65 and Results on Their Incidence and Cosmological Mass Density , 1999, astro-ph/9909164.

[69]  S. E. Persson,et al.  The Las Campanas Infrared Survey. IV. The Photometric Redshift Survey and the Rest-Frame R-Band Galaxy Luminosity Function at 0.5 ≤ z ≤ 1.5 , 2002, astro-ph/0212147.

[70]  B. Savage,et al.  The analysis of apparent optical depth profiles for interstellar absorption lines , 1991 .