Derivation of algorithms for cutwidth and related graph layout parameters
暂无分享,去创建一个
Dimitrios M. Thilikos | Michael R. Fellows | Hans L. Bodlaender | M. Fellows | D. Thilikos | H. Bodlaender
[1] Maria J. Serna,et al. Parameterized Complexity for Graph Layout Problems , 2005, Bull. EATCS.
[2] Hans L. Bodlaender,et al. A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.
[3] Dimitrios M. Thilikos,et al. Constructive Linear Time Algorithms for Branchwidth , 1997, ICALP.
[4] Hans L. Bodlaender,et al. Treewidth: Algorithmic Techniques and Results , 1997, MFCS.
[5] Ton Kloks,et al. Efficient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs , 1993, J. Algorithms.
[6] Hans L. Bodlaender,et al. A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..
[7] H. L. Bodlaender,et al. Treewidth: Algorithmic results and techniques , 1997 .
[8] Maria J. Serna,et al. Constructive Linear Time Algorithms for Small Cutwidth and Carving-Width , 2000, ISAAC.
[9] Michael R. Fellows,et al. On Well-Partial-Order Theory and its Application to Combinatorial Problems of VLSI Design , 1989, SIAM J. Discret. Math..
[10] Rolf H. Möhring,et al. Graph Problems Related to Gate Matrix Layout and PLA Folding , 1990 .
[11] Dominique Perrin,et al. Finite Automata , 1958, Philosophy.
[12] Ivan Hal Sudborough,et al. Min Cut is NP-Complete for Edge Weigthed Trees , 1986, ICALP.
[13] Michael R. Fellows,et al. An analogue of the Myhill-Nerode theorem and its use in computing finite-basis characterizations , 1989, 30th Annual Symposium on Foundations of Computer Science.
[14] Dimitrios M. Thilikos,et al. Starting with Nondeterminism: The Systematic Derivation of Linear-Time Graph Layout Algorithms , 2003, MFCS.
[15] Michael R. Fellows,et al. FIXED-PARAMETER TRACTABILITY AND COMPLETENESS , 2022 .
[16] Maria J. Serna,et al. Cutwidth I: A linear time fixed parameter algorithm , 2005, J. Algorithms.
[17] Michael R. Fellows,et al. Finite automata, bounded treewidth, and well-quasiordering , 1991, Graph Structure Theory.
[18] S. Arnborg,et al. Finding Minimal Forbidden Minors Using a Finite Congruence , 1991, ICALP.
[19] Jens Gustedt,et al. Linear-time register allocation for a fixed number of registers , 1998, SODA '98.
[20] Nancy G. Kinnersley,et al. The Vertex Separation Number of a Graph equals its Path-Width , 1992, Inf. Process. Lett..
[21] Maria J. Serna,et al. Cutwidth II: Algorithms for partial w-trees of bounded degree , 2005, J. Algorithms.
[22] Dimitrios M. Thilikos,et al. A Constructive linear time algorithm for small cutwidth , 2000 .
[23] Michael R. Fellows,et al. Finite-State Computability of Annotations of Strings and Trees , 1996, CPM.
[24] Sing-Ling Lee,et al. Linear Time Algorithms for k-cutwidth Problem , 1992, ISAAC.
[25] B. Mohar,et al. Graph Minors , 2009 .
[26] Paul D. Seymour,et al. Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.