ON GENERATING FUNCTIONS OF HAUSDORFF MOMENT SEQUENCES

The class of generating functions for completely monotone se- quences (moments of finite positive measures on (0, 1)) has an elegant char- acterization as the class of Pick functions analytic and positive on (−∞, 1). We establish this and another such characterization and develop a variety of consequences. In particular, we characterize generating functions for moments of convex and concave probability distribution functions on (0, 1). Also we provide a simple analytic proof that for any real p and r with p> 0, the Fuss-Catalan or Raney numbers r pn+r pn+r

[1]  René L. Schilling,et al.  Bernstein Functions: Theory and Applications , 2010 .

[2]  J. Cooper MONOTONE MATRIX FUNCTIONS AND ANALYTIC CONTINUATION , 1976 .

[3]  Karol Zyczkowski,et al.  Product of Ginibre matrices: Fuss-Catalan and Raney distributions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  J. Pitman,et al.  Moments of convex distribution functions and completely alternating sequences , 2006, math/0602091.

[5]  S. Sherman,et al.  Monotone and convex operator functions , 1955 .

[6]  Ronald L. Graham,et al.  Concrete Mathematics, a Foundation for Computer Science , 1991, The Mathematical Gazette.

[7]  K. Życzkowski,et al.  Densities of the Raney distributions , 2012, Documenta Mathematica.

[8]  F. Götze,et al.  Asymptotic distribution of singular values of powers of random matrices , 2010, 1002.4442.

[9]  D. Widder,et al.  The Laplace Transform , 1943, The Mathematical Gazette.

[10]  Note on Completely Monotone Densities , 1969 .

[11]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[12]  W. Donoghue Monotone Matrix Functions and Analytic Continuation , 1974 .

[13]  David A. Freedman,et al.  The Markov moment problem and de Finetti’s theorem: Part I , 2004 .

[14]  U. Haagerup,et al.  The Law of Large Numbers for the Free Multiplicative Convolution , 2012, 1211.4457.

[15]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[16]  Thomas Simon,et al.  Comparing Fréchet and positive stable laws , 2013, 1310.1888.

[17]  T. Sugawa,et al.  Completely monotone sequences and universally prestarlike functions , 2009 .

[18]  W. Feller,et al.  An Introduction to Probability Theory and Its Applications, Vol. II , 1972, The Mathematical Gazette.

[19]  Oliver Roth,et al.  A NOTE ON GENERATING FUNCTIONS FOR HAUSDORFF MOMENT SEQUENCES , 2008, 0802.2475.

[20]  F. Steutel,et al.  Infinite Divisibility of Probability Distributions on the Real Line , 2003 .

[21]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[22]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[23]  W. Mlotkowski,et al.  Fuss-Catalan numbers in noncommutative probability , 2010, Documenta Mathematica.

[24]  W. Mlotkowski,et al.  PROBABILITY DISTRIBUTIONS WITH BINOMIAL MOMENTS , 2013, 1309.0595.

[25]  D. Freedman,et al.  The Markov moment problem and de Finetti’s theorem: Part II , 2004 .

[26]  F. Steutel,et al.  On moment sequences and infinitely divisible sequences , 1988 .