A computational model of reactive oxygen species and redox balance in cardiac mitochondria.

[1]  Mark Friedman,et al.  Multistationary and Oscillatory Modes of Free Radicals Generation by the Mitochondrial Respiratory Chain Revealed by a Bifurcation Analysis , 2012, PLoS Comput. Biol..

[2]  Brian O'Rourke,et al.  Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: An experimental-computational study , 2012, The Journal of general physiology.

[3]  R. Springett,et al.  Measurement of the mitochondrial membrane potential and pH gradient from the redox poise of the hemes of the bc1 complex. , 2012, Biophysical journal.

[4]  U. Brandt A two-state stabilization-change mechanism for proton-pumping complex I. , 2011, Biochimica et biophysica acta.

[5]  S. Vogt,et al.  The role of mitochondrial membrane potential in ischemic heart failure. , 2011, Mitochondrion.

[6]  R. Efremov,et al.  Structure of the membrane domain of respiratory complex I , 2011, Nature.

[7]  N. Larsson,et al.  Tracing the Trail of Protons through Complex I of the Mitochondrial Respiratory Chain , 2011, PLoS biology.

[8]  R. Winslow,et al.  Mitochondrial energetics, pH regulation, and ion dynamics: a computational-experimental approach. , 2011, Biophysical journal.

[9]  J. Hirst,et al.  Superoxide Is Produced by the Reduced Flavin in Mitochondrial Complex I , 2011, The Journal of Biological Chemistry.

[10]  Josep Roca,et al.  Reactive Oxygen Species Production by Forward and Reverse Electron Fluxes in the Mitochondrial Respiratory Chain , 2011, PLoS Comput. Biol..

[11]  K. Krab,et al.  Explaining the enigmatic K(M) for oxygen in cytochrome c oxidase: a kinetic model. , 2011, Biochimica et biophysica acta.

[12]  Daniel A Beard,et al.  Kinetics and regulation of mammalian NADH-ubiquinone oxidoreductase (Complex I). , 2010, Biophysical journal.

[13]  S. Cortassa,et al.  Redox-optimized ROS balance: a unifying hypothesis. , 2010, Biochimica et biophysica acta.

[14]  B. O’Rourke,et al.  Elevated Cytosolic Na+ Increases Mitochondrial Formation of Reactive Oxygen Species in Failing Cardiac Myocytes , 2010, Circulation.

[15]  Josep Roca,et al.  Bistability of Mitochondrial Respiration Underlies Paradoxical Reactive Oxygen Species Generation Induced by Anoxia , 2009, PLoS Comput. Biol..

[16]  F. Zoccarato,et al.  Succinate is the controller of O2−/H2O2 release at mitochondrial complex I : negative modulation by malate, positive by cyanide , 2009, Journal of bioenergetics and biomembranes.

[17]  R. Winslow,et al.  Modeling cardiac action potential shortening driven by oxidative stress-induced mitochondrial oscillations in guinea pig cardiomyocytes. , 2009, Biophysical journal.

[18]  Feng Qi,et al.  Generating rate equations for complex enzyme systems by a computer-assisted systematic method , 2009, BMC Bioinformatics.

[19]  B. Trumpower,et al.  Membrane Potential Greatly Enhances Superoxide Generation by the Cytochrome bc1 Complex Reconstituted into Phospholipid Vesicles* , 2009, The Journal of Biological Chemistry.

[20]  Fuhua Chen,et al.  Oxidative Stress–Induced Afterdepolarizations and Calmodulin Kinase II Signaling , 2008, Circulation research.

[21]  M. Sarewicz,et al.  Movement of the iron-sulfur head domain of cytochrome bc(1) transiently opens the catalytic Q(o) site for reaction with oxygen. , 2008, Biochemistry.

[22]  Sarah E. Chobot,et al.  Quinone and non-quinone redox couples in Complex III , 2008, Journal of bioenergetics and biomembranes.

[23]  Josep Roca,et al.  The Role of External and Matrix pH in Mitochondrial Reactive Oxygen Species Generation* , 2008, Journal of Biological Chemistry.

[24]  B. O’Rourke,et al.  Enhancing Mitochondrial Ca2+ Uptake in Myocytes From Failing Hearts Restores Energy Supply and Demand Matching , 2008, Circulation research.

[25]  U. Brandt,et al.  The Mechanism of Mitochondrial Superoxide Production by the Cytochrome bc1 Complex* , 2008, Journal of Biological Chemistry.

[26]  P. Dutton,et al.  Exposing the complex III Qo semiquinone radical. , 2007, Biochimica et biophysica acta.

[27]  David M Kramer,et al.  A semiquinone intermediate generated at the Qo site of the cytochrome bc1 complex: Importance for the Q-cycle and superoxide production , 2007, Proceedings of the National Academy of Sciences.

[28]  M. L. Genova,et al.  Kinetics of integrated electron transfer in the mitochondrial respiratory chain: random collisions vs. solid state electron channeling. , 2007, American journal of physiology. Cell physiology.

[29]  T. Billiar,et al.  Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[30]  C. Chinopoulos,et al.  Bioenergetics and the formation of mitochondrial reactive oxygen species. , 2006, Trends in pharmacological sciences.

[31]  John E. Walker,et al.  Bovine Complex I Is a Complex of 45 Different Subunits* , 2006, Journal of Biological Chemistry.

[32]  Tammer A. Farid,et al.  Electron tunneling chains of mitochondria. , 2006, Biochimica et biophysica acta.

[33]  Raimond L Winslow,et al.  A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte. , 2006, Biophysical journal.

[34]  Min Zhang,et al.  NADPH oxidase-dependent redox signalling in cardiac hypertrophy, remodelling and failure. , 2006, Cardiovascular research.

[35]  J. Hirst,et al.  The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[36]  A. Vinogradov,et al.  Generation of superoxide by the mitochondrial Complex I. , 2006, Biochimica et biophysica acta.

[37]  P. Schumacker,et al.  Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. , 2005, Cell metabolism.

[38]  Frank J Giordano,et al.  Oxygen, oxidative stress, hypoxia, and heart failure. , 2005, The Journal of clinical investigation.

[39]  F. Muller,et al.  Complex III Releases Superoxide to Both Sides of the Inner Mitochondrial Membrane* , 2004, Journal of Biological Chemistry.

[40]  A. J. Lambert,et al.  Inhibitors of the Quinone-binding Site Allow Rapid Superoxide Production from Mitochondrial NADH:Ubiquinone Oxidoreductase (Complex I)* , 2004, Journal of Biological Chemistry.

[41]  A. J. Lambert,et al.  Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. , 2004, The Biochemical journal.

[42]  Raimond L Winslow,et al.  A mitochondrial oscillator dependent on reactive oxygen species. , 2004, Biophysical journal.

[43]  J. Turrens,et al.  Mitochondrial formation of reactive oxygen species , 2003, The Journal of physiology.

[44]  Bernhard Kadenbach,et al.  Intrinsic and extrinsic uncoupling of oxidative phosphorylation. , 2003, Biochimica et biophysica acta.

[45]  R. Winslow,et al.  An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. , 2003, Biophysical journal.

[46]  E. Cadenas,et al.  Voltage-dependent Anion Channels Control the Release of the Superoxide Anion from Mitochondria to Cytosol* , 2003, The Journal of Biological Chemistry.

[47]  A. Murphy,et al.  Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state. , 2002, The Biochemical journal.

[48]  M. Brand,et al.  Topology of Superoxide Production from Different Sites in the Mitochondrial Electron Transport Chain* , 2002, The Journal of Biological Chemistry.

[49]  Q. Jin,et al.  Kinetics of electron transfer through the respiratory chain. , 2002, Biophysical journal.

[50]  A. Takeshita,et al.  Probucol Attenuates Left Ventricular Dysfunction and Remodeling in Tachycardia-Induced Heart Failure: Roles of Oxidative Stress and Inflammation , 2002, Circulation.

[51]  B. Kholodenko,et al.  Kinetic Modeling of Energy Metabolism and Superoxide Generation in Hepatocyte Mitochondria , 2001, Molecular Biology.

[52]  M. L. Genova,et al.  The site of production of superoxide radical in mitochondrial Complex I is not a bound ubisemiquinone but presumably iron–sulfur cluster N2 , 2001, FEBS letters.

[53]  Freya Q. Schafer,et al.  Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. , 2001, Free radical biology & medicine.

[54]  G. Fiskum,et al.  Myxothiazol Induces H2O2 Production from Mitochondrial Respiratory Chain , 2001 .

[55]  A. Takeshita,et al.  Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. , 1999, Circulation research.

[56]  Shu-sen Liu,et al.  Cooperation of a “Reactive Oxygen Cycle” with The Q Cycle and The Proton Cycle in the Respiratory Chain—Superoxide Generating and Cycling Mechanisms in Mitochondria , 1999, Journal of bioenergetics and biomembranes.

[57]  B. Kholodenko,et al.  A model of O·2-generation in the complex III of the electron transport chain , 1998 .

[58]  P. Brzezinski,et al.  Pathways of Proton Transfer in Cytochrome c Oxidase , 1998, Journal of bioenergetics and biomembranes.

[59]  V. Skulachev,et al.  High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria , 1997, FEBS letters.

[60]  J. Keizer,et al.  Minimal model of beta-cell mitochondrial Ca2+ handling. , 1997, The American journal of physiology.

[61]  Y. Orii,et al.  Oxidation Process of Bovine Heart Ubiquinol-Cytochrome c Reductase as Studied by Stopped-flow Rapid-scan Spectrophotometry and Simulations Based on the Mechanistic Q Cycle Model* , 1997, The Journal of Biological Chemistry.

[62]  M. Brand,et al.  Relationship between membrane potential and respiration rate in isolated liver mitochondria from rats fed an energy dense diet , 1996, Molecular and Cellular Biochemistry.

[63]  G. Radda,et al.  Insulin, ketone bodies, and mitochondrial energy transduction , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[64]  Y. Hatefi,et al.  Thermodynamic analysis of flavin in mitochondrial NADH:ubiquinone oxidoreductase (complex I). , 1994, Biochemistry.

[65]  L. Scorrano,et al.  The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents. , 1994, The Journal of biological chemistry.

[66]  G. Gores,et al.  Mitochondria as a source of reactive oxygen species during reductive stress in rat hepatocytes. , 1993, The American journal of physiology.

[67]  T. Ohnishi,et al.  Determination of the position of the Qi.- quinone binding site from the protein surface of the cytochrome bc1 complex in Rhodobacter capsulates chromatophores. , 1992, Biochimica et biophysica acta.

[68]  W. Cramer,et al.  Energy Transduction in Biological Membranes , 1991 .

[69]  G. Brown,et al.  Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the 'top-down' approach of metabolic control theory. , 1990, European journal of biochemistry.

[70]  A. Lehninger,et al.  Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. , 1985, Archives of biochemistry and biophysics.

[71]  G. Brown,et al.  Thermodynamic control of electron flux through mitochondrial cytochrome bc1 complex. , 1985, The Biochemical journal.

[72]  J. Turrens,et al.  Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. , 1980, The Biochemical journal.

[73]  E. Cadenas,et al.  Enhancement of hydrogen peroxide formation by protophores and ionophores in antimycin-supplemented mitochondria. , 1980, The Biochemical journal.

[74]  E. Robin,et al.  Redox state of free nicotinamide-adenine nucleotides in the cytoplasm and mitochondria of alveolar macrophages. , 1971, The Journal of clinical investigation.

[75]  E. C. Slater,et al.  The redox states of respiratory-chain components in rat-liver mitochondria. II. The "crossover" on the transition from state 3 to state 4. , 1969, Biochimica et biophysica acta.

[76]  U. Brandt,et al.  Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. , 2012, Advances in experimental medicine and biology.

[77]  David F Wilson,et al.  Regulation of cellular energy metabolism , 2005, The Journal of Membrane Biology.

[78]  B. Kholodenko,et al.  A model of O·2- generation in the complex III of the electron transport chain , 2004, Molecular and Cellular Biochemistry.

[79]  W. Dröge Free radicals in the physiological control of cell function. , 2002, Physiological reviews.

[80]  G. Fiskum,et al.  Myxothiazol induces H(2)O(2) production from mitochondrial respiratory chain. , 2001, Biochemical and biophysical research communications.

[81]  B. Kholodenko,et al.  Kinetics and control of oxidative phosphorylation in rat liver mitochondria after chronic ethanol feeding. , 2000, The Biochemical journal.

[82]  B. Kholodenko,et al.  A model of O2.-generation in the complex III of the electron transport chain. , 1998, Molecular and cellular biochemistry.

[83]  J. Downey,et al.  Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. , 1997, Journal of molecular and cellular cardiology.

[84]  W. Cramer,et al.  Energy transduction in biological membranes : a textbook of bioenergetics , 1991 .

[85]  E. Reid CHAPTER 5 – Carbohydrate and Fatty Acid Metabolism , 1965 .