Mycorrhizal Fungi Respon d to Resource Inequality by Moving Phosphorus from Rich to Poor Patches across Networks Graphical

[1]  N. Dubilier,et al.  Fueled by methane: deep-sea sponges from asphalt seeps gain their nutrition from methane-oxidizing symbionts , 2019, The ISME Journal.

[2]  Claire E. Stanley,et al.  Bidirectional Propagation of Signals and Nutrients in Fungal Networks via Specialized Hyphae , 2019, Current Biology.

[3]  E. Kiers,et al.  Mycorrhizal Markets, Firms, and Co-ops. , 2018, Trends in ecology & evolution.

[4]  E. Kiers,et al.  Growth benefits provided by different arbuscular mycorrhizal fungi to Plantago lanceolata depend on the form of available phosphorus , 2018, European Journal of Soil Biology.

[5]  D. R. Hoagland,et al.  The Water-Culture Method for Growing Plants Without Soil , 2018 .

[6]  C. Pieterse,et al.  Tracking plant preference for higher‐quality mycorrhizal symbionts under varying CO 2 conditions over multiple generations , 2017, Ecology and evolution.

[7]  J. Jansa,et al.  Carbon flow from plant to arbuscular mycorrhizal fungi is reduced under phosphorus fertilization , 2017, Plant and Soil.

[8]  H. Van Erp,et al.  Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant , 2017, Science.

[9]  D. Tang,et al.  Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi , 2017, Science.

[10]  T. Cajthaml,et al.  Real-time PCR quantification of arbuscular mycorrhizal fungi: does the use of nuclear or mitochondrial markers make a difference? , 2017, Mycorrhiza.

[11]  W. Eisenreich,et al.  Lipid transfer from plants to arbuscular mycorrhiza fungi , 2017, bioRxiv.

[12]  Lynne Boddy,et al.  The Mycelium as a Network. , 2017, Microbiology spectrum.

[13]  M. Brenner,et al.  Mechanism of signal propagation in Physarum polycephalum , 2017, Proceedings of the National Academy of Sciences.

[14]  Johannes Schindelin,et al.  TrackMate: An open and extensible platform for single-particle tracking. , 2017, Methods.

[15]  J. Bever,et al.  Plant preferential allocation and fungal reward decline with soil phosphorus: implications for mycorrhizal mutualism , 2016 .

[16]  D. Drubin,et al.  Clathrin-mediated endocytosis in budding yeast at a glance , 2016, Journal of Cell Science.

[17]  J. Schnoor,et al.  Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants – Critical review , 2016, Nanotoxicology.

[18]  P. Hammerstein,et al.  Biological trade and markets , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[19]  A. Gardner,et al.  Restricting mutualistic partners to enforce trade reliance , 2016, Nature Communications.

[20]  C. Lowe,et al.  Shining a Light on Exploitative Host Control in a Photosynthetic Endosymbiosis , 2016, Current Biology.

[21]  M. Kumar,et al.  Fungal association and utilization of phosphate by plants: success, limitations, and future prospects , 2015, Front. Microbiol..

[22]  S. Allison,et al.  UC Irvine UC Irvine Previously Published Works Title Quantum Dots Reveal Shifts in Organic Nitrogen Uptake by Fungi Exposed to Long-Term Nitrogen Enrichment , 2015 .

[23]  A. McGoron,et al.  Efficient intracellular delivery and improved biocompatibility of colloidal silver nanoparticles towards intracellular SERS immuno-sensing. , 2015, The Analyst.

[24]  D. J. Nieves,et al.  Photothermal raster image correlation spectroscopy of gold nanoparticles in solution and on live cells , 2015, Royal Society Open Science.

[25]  E. Kiers,et al.  Order of arrival structures arbuscular mycorrhizal colonization of plants. , 2015, The New phytologist.

[26]  E. Kiers,et al.  Host diversity affects the abundance of the extraradical arbuscular mycorrhizal network. , 2015, The New phytologist.

[27]  P. Alvarez,et al.  Fluorescence reports intact quantum dot uptake into roots and translocation to leaves of Arabidopsis thaliana and subsequent ingestion by insect herbivores. , 2015, Environmental science & technology.

[28]  M. Whiteside,et al.  Development and use of a quantum dot probe to track multiple yeast strains in mixed culture , 2014, Scientific Reports.

[29]  L. Chan,et al.  What Lurks in the Martian Rocks and Soil? Investigations of Sulfates, Phosphates, and Perchlorates. Flower-like apatite recording microbial processes through deep geological time and its implication to the search for mineral records of life on Mars , 2014 .

[30]  A. Müsch Vesicular Transport in the Secretory and Endocytic Pathways , 2014 .

[31]  A. Gardner,et al.  A BIOLOGICAL MARKET ANALYSIS OF THE PLANT‐MYCORRHIZAL SYMBIOSIS , 2014, Evolution; international journal of organic evolution.

[32]  E. Kiers,et al.  Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. , 2014, The New phytologist.

[33]  Samuel Ellis,et al.  Resource redistribution in polydomous ant nest networks: local or global? , 2014, Behavioral ecology : official journal of the International Society for Behavioral Ecology.

[34]  C. Maycock,et al.  Quantum dot and superparamagnetic nanoparticle interaction with pathogenic fungi: internalization and toxicity profile. , 2014, ACS applied materials & interfaces.

[35]  P. Chagnon Ecological and evolutionary implications of hyphal anastomosis in arbuscular mycorrhizal fungi. , 2014, FEMS microbiology ecology.

[36]  J. Behm,et al.  Intense competition between arbuscular mycorrhizal mutualists in an in vitro root microbiome negatively affects total fungal abundance , 2014, Molecular ecology.

[37]  U. Dieckmann,et al.  Resource heterogeneity can facilitate cooperation , 2013, Nature Communications.

[38]  M. Whiteway,et al.  Clathrin- and Arp2/3-Independent Endocytosis in the Fungal Pathogen Candida albicans , 2013, mBio.

[39]  K. Treseder,et al.  Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest. , 2012, Soil biology & biochemistry.

[40]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[41]  D. Relman,et al.  The Application of Ecological Theory Toward an Understanding of the Human Microbiome , 2012, Science.

[42]  Serguei Saavedra,et al.  Foraging under conditions of short-term exploitative competition: the case of stock traders , 2012, Proceedings of the Royal Society B: Biological Sciences.

[43]  Zhixia Li,et al.  Preparation of low-crystalline apatite nanoparticles and their coating onto quartz substrates , 2012, Journal of Materials Science: Materials in Medicine.

[44]  S. West,et al.  Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal Symbiosis , 2011, Science.

[45]  H. Wallander,et al.  Tit for tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability. , 2011, FEMS microbiology ecology.

[46]  J. Strassmann,et al.  Primitive agriculture in a social amoeba , 2011, Nature.

[47]  P. Olsson,et al.  Plants as resource islands and storage units--adopting the mycocentric view of arbuscular mycorrhizal networks. , 2010, FEMS microbiology ecology.

[48]  C. Maycock,et al.  The impact of CdSe/ZnS Quantum Dots in cells of Medicago sativa in suspension culture , 2010, Journal of nanobiotechnology.

[49]  Molly J. Rossow,et al.  Raster image correlation spectroscopy in live cells , 2010, Nature Protocols.

[50]  N. Charoenphandhu,et al.  Biomagnetic of Apatite-Coated Cobalt Ferrite: A Core–Shell Particle for Protein Adsorption and pH-Controlled Release , 2010, Nanoscale research letters.

[51]  S. Alexeeva,et al.  Direct interactions of early and late assembling division proteins in Escherichia coli cells resolved by FRET , 2010, Molecular microbiology.

[52]  M. Kumar,et al.  A Phosphate Transporter from the Root Endophytic Fungus Piriformospora indica Plays a Role in Phosphate Transport to the Host Plant* , 2010, The Journal of Biological Chemistry.

[53]  J. Sperry,et al.  Tansley Review , 2022 .

[54]  R. Miller,et al.  Resource limitation is a driver of local adaptation in mycorrhizal symbioses , 2010, Proceedings of the National Academy of Sciences.

[55]  M. Welte Fat on the move: intracellular motion of lipid droplets. , 2009, Biochemical Society transactions.

[56]  Mollie E. Brooks,et al.  Generalized linear mixed models: a practical guide for ecology and evolution. , 2009, Trends in ecology & evolution.

[57]  N. Buchmann,et al.  Resource Heterogeneity Moderates the Biodiversity-Function Relationship in Real World Ecosystems , 2008, PLoS Biology.

[58]  J. Klimešová,et al.  Integration in the clonal plant Eriophorum angustifolium: an experiment with a three-member-clonal system in a patchy environment , 2008, Evolutionary Ecology.

[59]  Jakub Wlodarczyk,et al.  Analysis of FRET signals in the presence of free donors and acceptors. , 2008, Biophysical journal.

[60]  M. Fricker,et al.  Fourier-based spatial mapping of oscillatory phenomena in fungi. , 2007, Fungal genetics and biology : FG & B.

[61]  E. Onelli,et al.  Distinct endocytic pathways identified in tobacco pollen tubes using charged nanogold , 2007, Journal of Cell Science.

[62]  J. Banfield,et al.  Phosphorous availability influences the dissolution of apatite by soil fungi , 2007 .

[63]  V. S. Lin,et al.  Mesoporous silica nanoparticles deliver DNA and chemicals into plants. , 2007, Nature nanotechnology.

[64]  A. Vyas,et al.  Arbuscular Mycorrhiza on Root-Organ Cultures , 2007 .

[65]  E. Baroja-Fernández,et al.  Fluid Phase Endocytic Uptake of Artificial Nano-Spheres and Fluorescent Quantum Dots by Sycamore Cultured Cells , 2006, Plant signaling & behavior.

[66]  R. Lew Mass flow and pressure-driven hyphal extension in Neurospora crassa. , 2005, Microbiology.

[67]  Enrico Gratton,et al.  Measuring fast dynamics in solutions and cells with a laser scanning microscope. , 2005, Biophysical journal.

[68]  I. Scheuring,et al.  Environmental heterogeneity and the evolution of mutualism , 2004 .

[69]  C. Keller,et al.  Hyperaccumulation of Cadmium and Zinc in Thlaspi caerulescens and Arabidopsis halleri at the Leaf Cellular Level1 , 2004, Plant Physiology.

[70]  R. Pepperkok,et al.  Spectral imaging and its applications in live cell microscopy , 2003, FEBS letters.

[71]  Jason D. Hoeksema,et al.  Expanding comparative–advantage biological market models: contingency of mutualism on partner's resource requirements and acquisition trade–offs , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[72]  J. Jansa,et al.  A phosphate transporter expressed in arbuscule-containing cells in potato , 2001, Nature.

[73]  Sally E. Smith,et al.  Microtubules of the mycorrhizal fungus Glomus intraradices in symbiosis with tomato roots , 2001 .

[74]  P. Vlek,et al.  Mechanism of calcium and phosphate release from hydroxy-apatite by mycorrhizal hyphae. , 2000 .

[75]  E. Paul,et al.  Soil microbiology and biochemistry. , 1998 .

[76]  S. Harashima,et al.  The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter , 1991, Molecular and cellular biology.

[77]  G. Fairchild,et al.  A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. , 1990, The New phytologist.

[78]  D. Lilley,et al.  Fluorescence energy transfer shows that the four-way DNA junction is a right-handed cross of antiparallel molecules , 1989, Nature.

[79]  I. Jakobsen,et al.  Nutrient Dynamics in Arbuscular Mycorrhizal Networks , 2015 .

[80]  J. Šamaj Endocytosis in Plants , 2012, Springer Berlin Heidelberg.

[81]  K. Treseder,et al.  The brighter side of soils: quantum dots track organic nitrogen through fungi and plants. , 2009, Ecology.

[82]  T. Gadella,et al.  FRET and FLIM techniques , 2009 .

[83]  G. Bécard,et al.  Inoculation and Growth with Mycorrhizal Fungi , 2006 .

[84]  P. Martin,et al.  The most widespread symbiosis on Earth. , 2006, PLoS biology.

[85]  B. Bago,et al.  Breaking Myths on Arbuscular Mycorrhizas in Vitro Biology , 2005 .

[86]  A. Adholeya,et al.  In vitro co-culture of two AMF isolates Gigaspora margarita and Glomus intraradices on Ri T-DNA transformed roots. , 2002, FEMS microbiology letters.

[87]  W. Zipfel,et al.  Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. , 2002, Plant physiology.