Effects of soil organic matter composition on unfrozen water content and heterotrophic CO2 production of frozen soils

[1]  M. Nilsson,et al.  Water availability controls microbial temperature responses in frozen soil CO2 production , 2009 .

[2]  M. Nilsson,et al.  Contributions of matric and osmotic potentials to the unfrozen water content of frozen soils , 2009 .

[3]  N. Panikov,et al.  Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to -35°C. , 2007 .

[4]  E. Rastetter,et al.  Carbon turnover in Alaskan tundra soils: effects of organic matter quality, temperature, moisture and fertilizer , 2006 .

[5]  W. Oechel,et al.  Microbial activity in soils frozen to below −39 °C , 2006 .

[6]  E. Davidson,et al.  Temperature sensitivity of soil carbon decomposition and feedbacks to climate change , 2006, Nature.

[7]  R. Monson,et al.  Winter forest soil respiration controlled by climate and microbial community composition , 2006, Nature.

[8]  G. Vance,et al.  Influence of coarse wood and fine litter on forest organic matter composition , 2006 .

[9]  M. Simpson,et al.  Identification of mobile aliphatic sorptive domains in soil humin by solid‐state 13C nuclear magnetic resonance , 2006, Environmental toxicology and chemistry.

[10]  J. Schimel,et al.  Changing microbial substrate use in Arctic tundra soils through a freeze-thaw cycle , 2005 .

[11]  R. Smernik Solid-state 13C NMR spectroscopic studies of soil organic matter at two magnetic field strengths , 2005 .

[12]  K. Elder,et al.  Carbon limitation of soil respiration under winter snowpacks: potential feedbacks between growing season and winter carbon fluxes , 2005 .

[13]  M. Nilsson,et al.  Quantifying unfrozen water in frozen soil by high-field 2H NMR. , 2004, Environmental science & technology.

[14]  M. Nilsson,et al.  Nitrous oxide production in a forest soil at low temperatures - processes and environmental controls. , 2004, FEMS microbiology ecology.

[15]  K. Hannam,et al.  Forest Floor Composition in Aspen- and Spruce-Dominated Stands of the Boreal Mixedwood Forest , 2004 .

[16]  H. Cornell,et al.  The role of hydrogen bonding in amylose gelation , 2004 .

[17]  F. Tanaka,et al.  The behavior of cellulose molecules in aqueous environments , 2004 .

[18]  Christopher W. Schadt,et al.  Seasonal Dynamics of Previously Unknown Fungal Lineages in Tundra Soils , 2003, Science.

[19]  Joshua P. Schimel,et al.  Temperature controls of microbial respiration in arctic tundra soils above and below freezing , 2002 .

[20]  Ingrid Kögel-Knabner,et al.  The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter , 2002 .

[21]  C. Preston,et al.  Variability in litter quality and its relationship to litter decay in Canadian forests. , 2000 .

[22]  C. McKay,et al.  Metabolic Activity of Permafrost Bacteria below the Freezing Point , 2000, Applied and Environmental Microbiology.

[23]  I. Kögel‐Knabner Analytical approaches for characterizing soil organic matter , 2000 .

[24]  Vladimir E. Romanovsky,et al.  Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost. , 2000 .

[25]  I. Morrison,et al.  Litter decomposition and humus characteristics in Canadian and German spruce ecosystems: information from tannin analysis and 13C CPMAS NMR. , 2000 .

[26]  J. Oades,et al.  The use of spin counting for determining quantitation in solid state 13C NMR spectra of natural organic matter: 2. HF-treated soil fractions , 2000 .

[27]  J. Oades,et al.  The use of spin counting for determining quantitation in solid state 13C NMR spectra of natural organic matter: 1. Model systems and the effects of paramagnetic impurities , 2000 .

[28]  R. Monson,et al.  Carbon availability and temperature control the post-snowmelt decline in alpine soil microbial biomass , 2000 .

[29]  G. Ågren,et al.  Soil organic matter quality interpreted thermodynamically , 1999 .

[30]  E. Paul,et al.  Soil microbiology and biochemistry. , 1998 .

[31]  M. Hohmann Soil freezing — the concept of soil water potential. State of the art , 1997 .

[32]  C. Preston Applications of NMR to soil organic matter analysis : History and prospects , 1996 .

[33]  I. Kögel‐Knabner,et al.  Aliphatic components of forest soil organic matter as determined by solid-state 13C NMR and analytical pyrolysis , 1992 .

[34]  M. Wilson,et al.  Significance of microbial activity in soils as demonstrated by solid-state 13C NMR. , 1990 .

[35]  Anònim Anònim Keys to Soil Taxonomy , 2010 .

[36]  J. Baldock,et al.  Estimating the molecular composition of a diverse range of natural organic materials from solid-state 13C NMR and elemental analyses , 2005 .

[37]  D. Axelson,et al.  Characterization of organic matter in a forest soil of coastal British Columbia by NMR and pyrolysis-field ionization mass spectrometry , 2004, Plant and Soil.

[38]  Michael A. Wilson N.M.R. techniques and applications in geochemistry and soil chemistry , 1987 .

[39]  D. Hillel Introduction to environmental soil physics , 1982 .

[40]  Juhani Päivänen,et al.  Hydraulic conductivity and water retention in peat soils. , 1973 .