Quantum Computing for Computer Architects, Second Edition

Quantum computers can (in theory) solve certain problems far faster than a classical computer running any known classical algorithm. While existing technologies for building quantum computers are in their infancy, it is not too early to consider their scalability and reliability in the context of the design of large-scale quantum computers. To architect such systems, one must understand what it takes to design and model a balanced, fault-tolerant quantum computer architecture. The goal of this lecture is to provide architectural abstractions for the design of a quantum computer and to explore the systems-level challenges in achieving scalable, fault-tolerant quantum computation. In this lecture, we provide an engineering-oriented introduction to quantum computation with an overview of the theory behind key quantum algorithms. Next, we look at architectural case studies based upon experimental data and future projections for quantum computation implemented using trapped ions. While we focus here on architectures targeted for realization using trapped ions, the techniques for quantum computer architecture design, quantum fault-tolerance, and compilation described in this lecture are applicable to many other physical technologies that may be viable candidates for building a large-scale quantum computing system. We also discuss general issues involved with programming a quantum computer as well as a discussion of work on quantum architectures based on quantum teleportation. Finally, we consider some of the open issues remaining in the design of quantum computers. Table of Contents: Introduction / Basic Elements for Quantum Computation / Key Quantum Algorithms / Building Reliable and Scalable Quantum Architectures / Simulation of Quantum Computation / Architectural Elements / Case Study: The Quantum Logic Array Architecture / Programming the Quantum Architecture / Using the QLA for Quantum Simulation: The Transverse Ising Model / Teleportation-Based Quantum Architectures / Concluding Remarks

[1]  Tad Hogg,et al.  TOOLS FOR QUANTUM ALGORITHMS , 1999 .

[2]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[3]  E. Knill,et al.  Experimental purification of two-atom entanglement , 2006, Nature.

[4]  E. Knill,et al.  Quantum gates using linear optics and postselection , 2002 .

[5]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[6]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[7]  Robert M. Jopson,et al.  System design for large-scale ion trap quantum information processor , 2005, Quantum Inf. Comput..

[8]  Mircea Vladutiu,et al.  Using HDLs for describing quantum circuits: a framework for efficient quantum algorithm simulation , 2004, CF '04.

[9]  Ian Lewis,et al.  Proceedings of the SPIE , 2012 .

[10]  M. Suzuki,et al.  General theory of higher-order decomposition of exponential operators and symplectic integrators , 1992 .

[11]  B. E. Kane,et al.  Hydrogenic spin quantum computing in silicon: a digital approach. , 2002, Physical review letters.

[12]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[13]  Shigeki Takeuchi Analysis of errors in linear-optics quantum computation , 2000 .

[14]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[15]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[16]  F. E. Camino,et al.  Aharonov-Bohm electron interferometer in the integer quantum Hall regime , 2005 .

[17]  Andrew M. Steane Efficient fault-tolerant quantum computing , 1999, Nature.

[18]  Klaus Molmer,et al.  Entanglement and quantum computation with ions in thermal motion , 2000 .

[19]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[20]  A. Harrow,et al.  Superdense coding of quantum states. , 2003, Physical review letters.

[21]  Marc A. Kastner,et al.  Toward the manipulation of a single spin in an AlGaAs/GaAs single-electron transistor , 2006, SPIE Defense + Commercial Sensing.

[22]  R. B. Blakestad,et al.  Microfabricated surface-electrode ion trap for scalable quantum information processing. , 2006, Physical review letters.

[23]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[24]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[25]  Stan Baggen,et al.  Error Correction , 1984 .

[26]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[27]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[28]  Mark Dykman,et al.  Quantum Computing with Electrons Floating on Liquid Helium , 1999 .

[29]  P. Benioff Quantum Mechanical Models of Turing Machines That Dissipate No Energy , 1982 .

[30]  Hood,et al.  Measurement of conditional phase shifts for quantum logic. , 1995, Physical review letters.

[31]  J. Biamonte,et al.  Realizable Hamiltonians for Universal Adiabatic Quantum Computers , 2007, 0704.1287.

[32]  M B Plenio,et al.  Efficient factorization with a single pure qubit and logN mixed qubits. , 2000, Physical review letters.

[33]  Y Yamamoto,et al.  All-silicon quantum computer. , 2002, Physical review letters.

[34]  Andrew W. Cross,et al.  A quantum logic array microarchitecture: scalable quantum data movement and computation , 2005, 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'05).

[35]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[36]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[37]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[38]  Andrew M. Childs,et al.  Robustness of adiabatic quantum computation , 2001, quant-ph/0108048.

[39]  A.M. Herr,et al.  Prospects for quantum coherent computation using superconducting electronics , 1997, IEEE Transactions on Applied Superconductivity.

[40]  David P. DiVincenzo,et al.  Noise threshold for a fault-tolerant two-dimensional lattice architecture , 2007, Quantum Inf. Comput..

[41]  P. Zoller,et al.  A scalable quantum computer with ions in an array of microtraps , 2000, Nature.

[42]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.

[43]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[44]  D. Bacon Operator quantum error-correcting subsystems for self-correcting quantum memories , 2005, quant-ph/0506023.

[45]  E. Knill,et al.  Quantum control, quantum information processing, and quantum-limited metrology with trapped ions , 2005 .

[46]  Frederic T. Chong,et al.  Scheduling physical operations in a quantum information processor , 2006, SPIE Defense + Commercial Sensing.

[47]  Leslie G. Valiant,et al.  Quantum computers that can be simulated classically in polynomial time , 2001, STOC '01.

[48]  F. Martini,et al.  Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels , 1997, quant-ph/9710013.

[49]  C. Monroe,et al.  Observation of entanglement between a single trapped atom and a single photon , 2004, Nature.

[50]  Igor L. Markov,et al.  Minimal universal two-qubit controlled-NOT-based circuits (8 pages) , 2004 .

[51]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[52]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.

[53]  Dirk Schwalm,et al.  Coulomb-explosion imaging of CH2 + : Target-polarization effects and bond-angle distribution , 2004 .

[54]  A. Fowler,et al.  Long-range coupling and scalable architecture for superconducting flux qubits , 2007, cond-mat/0702620.

[55]  D. Poulin Stabilizer formalism for operator quantum error correction. , 2005, Physical review letters.

[56]  A. Kitaev Quantum Error Correction with Imperfect Gates , 1997 .

[57]  Gilles Brassard,et al.  Experimental Quantum Cryptography , 1990, EUROCRYPT.

[58]  Daniel Gottesman Fault-tolerant quantum computation with local gates , 2000 .

[59]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[60]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[61]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[62]  J. Britton,et al.  A microfabricated surface-electrode ion trap in silicon , 2006 .

[63]  Mark Oskin,et al.  Microcoded Architectures for Ion-Tap Quantum Computers , 2008, 2008 International Symposium on Computer Architecture.

[64]  Y. Shih,et al.  Quantum teleportation with a complete Bell state measurement , 2000, Physical Review Letters.

[65]  Yong Hu,et al.  Magnetization behavior and magnetic entropy change of frustrated Ising antiferromagnets on two- and three-dimensional lattices , 2008 .

[66]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[67]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[68]  J. Cirac,et al.  Quantum repeaters based on entanglement purification , 1998, quant-ph/9808065.

[69]  Lu-Ming Duan,et al.  Scalable trapped ion quantum computation with a probabilistic ion-photon mapping , 2004, Quantum Inf. Comput..

[70]  Tzvetan S. Metodi,et al.  Resource requirements for fault-tolerant quantum simulation: The ground state of the transverse Ising model , 2009 .

[71]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[72]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[73]  A. Steane Space, Time, Parallelism and Noise Requirements for Reliable Quantum Computing , 1997, quant-ph/9708021.

[74]  Frederic T. Chong,et al.  A Practical Architecture for Reliable Quantum Computers , 2002, Computer.

[75]  Rajeev Motwani,et al.  Profile-driven instruction level parallel scheduling with application to super blocks , 1996, Proceedings of the 29th Annual IEEE/ACM International Symposium on Microarchitecture. MICRO 29.

[76]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[77]  C. Monroe,et al.  Quantum information processing with atoms and photons , 2002, Nature.

[78]  A. Politi,et al.  Shor’s Quantum Factoring Algorithm on a Photonic Chip , 2009, Science.

[79]  Chung-Ping Chung,et al.  An Optimal Instruction Scheduler for Superscalar Processor , 1995, IEEE Trans. Parallel Distributed Syst..

[80]  Parsa Bonderson,et al.  Detecting non-Abelian statistics in the nu = 5/2 fractional quantum hall state. , 2006, Physical review letters.

[81]  Parsa Bonderson,et al.  Decoherence of anyonic charge in interferometry measurements. , 2007, Physical review letters.

[82]  Igor L. Markov,et al.  Finding small two-qubit circuits , 2004, SPIE Defense + Commercial Sensing.

[83]  Andrew M. Steane Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.

[84]  Timothy F. Havel,et al.  Nuclear magnetic resonance spectroscopy: an experimentally accessible paradigm for quantum computing , 1997, quant-ph/9709001.

[85]  Milburn,et al.  Quantum optical Fredkin gate. , 1989, Physical review letters.

[86]  R J Schoelkopf,et al.  Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits. , 2006, Physical review letters.

[87]  I. Chuang,et al.  Limitations of quantum simulation examined by simulating a pairing Hamiltonian using nuclear magnetic resonance. , 2006, Physical review letters.

[88]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[89]  J. Hughes,et al.  Transport of Quantum States and Separation of Ions in a Dual Rf Ion Trap * , 2002 .

[90]  Deutsch,et al.  Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels. , 1996, Physical review letters.

[91]  Jacob M. Taylor,et al.  Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins , 2005 .

[92]  John Preskill,et al.  Fault-tolerant computing with biased-noise superconducting qubits: a case study , 2008, 0806.0383.

[93]  John Kubiatowicz,et al.  A fault tolerant, area efficient architecture for Shor's factoring algorithm , 2009, ISCA '09.

[94]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[95]  A. Mink,et al.  Has quantum cryptography been proven secure? , 2006, SPIE Defense + Commercial Sensing.

[96]  J. Cirac,et al.  Creation of entangled states of distant atoms by interference , 1998, quant-ph/9810013.

[97]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[98]  Dan Ventura,et al.  Optically simulating a quantum associative memory , 2000 .

[99]  John P. Hayes,et al.  Graph-based simulation of quantum computation in the density matrix representation , 2004, SPIE Defense + Commercial Sensing.

[100]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[101]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[102]  Seth Lloyd,et al.  Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[103]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[104]  Dmitri Maslov,et al.  Quantum Circuit Placement: Optimizing Qubit-to-qubit Interactions through Mapping Quantum Circuits into a Physical Experiment , 2007, 2007 44th ACM/IEEE Design Automation Conference.

[105]  Julia Kempe,et al.  The Complexity of the Local Hamiltonian Problem , 2004, FSTTCS.

[106]  V. Privman,et al.  QUANTUM COMPUTATION IN QUANTUM-HALL SYSTEMS , 1997, quant-ph/9707017.

[107]  Igor L. Markov,et al.  Recognizing small-circuit structure in two-qubit operators (5 pages) , 2003 .

[108]  C Langer,et al.  Long-lived qubit memory using atomic ions. , 2005, Physical review letters.

[109]  Barnett,et al.  Information-theoretic limits to quantum cryptography. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[110]  Jörgen Olsson,et al.  Membrane covered electrically isolated through-wafer via holes , 2001 .

[111]  Sebastian Doniach,et al.  Zero-temperature renormalization method for quantum systems. I. Ising model in a transverse field in one dimension , 1979 .

[112]  H. Weinfurter,et al.  Experimental Entanglement Swapping: Entangling Photons That Never Interacted , 1998 .

[113]  Thomas G. Draper,et al.  A logarithmic-depth quantum carry-lookahead adder , 2006, Quantum Inf. Comput..

[114]  S. Rolston,et al.  Quantum information with neutral atoms as qubits , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[115]  J. R. Mitchell,et al.  Grover's search algorithm: An optical approach , 1999, quant-ph/9905086.

[116]  David P. DiVincenzo,et al.  Local fault-tolerant quantum computation , 2005 .

[117]  J. von Neumann,et al.  Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components , 1956 .

[118]  Thomas P. Minka,et al.  Gates , 2008, NIPS.

[119]  C. P. Sun,et al.  Quantum teleportation using cluster states , 2008 .

[120]  Chuang Quantum algorithm for distributed clock synchronization , 2000, Physical review letters.

[121]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[122]  B. E. Kane Silicon‐Based Quantum Computation , 2000, quant-ph/0003031.

[123]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[124]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[125]  V. Shumeiko,et al.  Josephson junction qubit network with current-controlled interaction , 2004, cond-mat/0403285.

[126]  Kristel Michielsen,et al.  QCE: a simulator for quantum computer hardware , 2003 .

[127]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[128]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[129]  O. Regev,et al.  An Elementary Proof of the Quantum Adiabatic Theorem , 2004, quant-ph/0411152.

[130]  D. Abrams,et al.  Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.

[131]  S. Caprara,et al.  QUANTUM ISING MODEL IN A TRANSVERSE RANDOM FIELD : A DENSITY-MATRIX RENORMALIZATION-GROUP ANALYSIS , 1997, cond-mat/9709218.

[132]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[133]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[134]  M. Nielsen Optical quantum computation using cluster States. , 2004, Physical review letters.

[135]  Jonathan A. Jones,et al.  Geometric quantum computation using nuclear magnetic resonance , 2000, Nature.

[136]  Wojciech H. Zurek,et al.  Sympathetic cooling of trapped ions for quantum logic , 2000 .

[137]  P. Pfeuty The one-dimensional Ising model with a transverse field , 1970 .

[138]  Thomas G. Draper Addition on a Quantum Computer , 2000, quant-ph/0008033.

[139]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[140]  Edward Farhi,et al.  A Numerical Study of the Performance of a Quantum Adiabatic Evolution Algorithm for Satisfiability , 2000, ArXiv.

[141]  John Kubiatowicz,et al.  Interconnection Networks for Scalable Quantum Computers , 2006, 33rd International Symposium on Computer Architecture (ISCA'06).

[142]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[143]  John Kubiatowicz,et al.  Running a Quantum Circuit at the Speed of Data , 2008, 2008 International Symposium on Computer Architecture.

[144]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[145]  Andrew W. Cross,et al.  Transversality Versus Universality for Additive Quantum Codes , 2007, IEEE Transactions on Information Theory.

[146]  Frederic T. Chong,et al.  Quantum Memory Hierarchies: Efficient Designs to Match Available Parallelism in Quantum Computing , 2006, 33rd International Symposium on Computer Architecture (ISCA'06).

[147]  David J. Wineland,et al.  Surface-electrode architecture for ion-trap quantum information processing , 2005, Quantum Inf. Comput..

[148]  G. J. Milburn,et al.  Charge-based quantum computing using single donors in semiconductors , 2004 .

[149]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[150]  John Clarke,et al.  Solid-State Qubits with Current-Controlled Coupling , 2006, Science.

[151]  R. J. Elliott,et al.  Ising Model with a Transverse Field , 1970 .

[152]  Yuriy Makhlin,et al.  Josephson-junction qubits with controlled couplings , 1999, Nature.

[153]  Jian-Wei Pan,et al.  Demonstration of a compiled version of Shor's quantum factoring algorithm using photonic qubits. , 2007, Physical review letters.

[154]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.

[155]  D. Leung,et al.  Methodology for quantum logic gate construction , 2000, quant-ph/0002039.

[156]  Mircea Vladutiu,et al.  Improving quantum circuit dependability with reconfigurable quantum gate arrays , 2005, CF '05.

[157]  Frederic T. Chong,et al.  Building quantum wires: the long and the short of it , 2003, 30th Annual International Symposium on Computer Architecture, 2003. Proceedings..

[158]  R. Moessner,et al.  Ising and dimer models in two and three dimensions , 2003 .

[159]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and EPR channels , 1993 .

[160]  Michael A. Nielsen,et al.  Fault-tolerant quantum computation with cluster states , 2005 .

[161]  Ou,et al.  Violation of Bell's inequality and classical probability in a two-photon correlation experiment. , 1988, Physical review letters.

[162]  Leslie G. Valiant,et al.  Quantum Circuits That Can Be Simulated Classically in Polynomial Time , 2002, SIAM J. Comput..

[163]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[164]  M Santos Short-time critical dynamics for the transverse ising model. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[165]  S. Lloyd,et al.  Quantum Coherent Tunable Coupling of Superconducting Qubits , 2007, Science.

[166]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[167]  Mark Oskin,et al.  An Evaluation Framework and Instruction Set Architecture for Ion-Trap Based Quantum Micro-Architectures , 2005, ISCA 2005.

[168]  Yahiko Kambayashi,et al.  Transformation rules for designing CNOT-based quantum circuits , 2002, DAC '02.

[169]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[170]  L. Deslauriers,et al.  T-junction ion trap array for two-dimensional ion shuttling, storage, and manipulation , 2005, quant-ph/0508097.

[171]  Carl Ebeling,et al.  PathFinder: A Negotiation-Based Performance-Driven Router for FPGAs , 1995, Third International ACM Symposium on Field-Programmable Gate Arrays.

[172]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[173]  E. Knill,et al.  Conventions for quantum pseudocode , 1996, 2211.02559.

[174]  A. Steane Overhead and noise threshold of fault-tolerant quantum error correction , 2002, quant-ph/0207119.

[175]  Wen-mei W. Hwu,et al.  Speculative hedge: regulating compile-time speculation against profile variations , 1996, Proceedings of the 29th Annual IEEE/ACM International Symposium on Microarchitecture. MICRO 29.

[176]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[177]  Frederic T. Chong,et al.  Toward a scalable, silicon-based quantum computing architecture , 2003 .

[178]  Peter W. Shor,et al.  Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[179]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[180]  D. A. Lidar,et al.  Encoded recoupling and decoupling: An alternative to quantum error-correcting codes applied to trapped-ion quantum computation , 2003 .

[181]  Mark Oskin,et al.  Architectural implications of quantum computing technologies , 2006, ACM J. Emerg. Technol. Comput. Syst..

[182]  Thomas W. Kenny,et al.  Integration of through-wafer interconnects with a two-dimensional cantilever array , 2000 .

[183]  Andreas Klappenecker,et al.  Optimal realizations of controlled unitary gates , 2003, Quantum Inf. Comput..

[184]  Elizabeth H. Bennett,et al.  Through the gate , 1945 .

[185]  R. V. Meter,et al.  Fast quantum modular exponentiation , 2004, quant-ph/0408006.

[186]  Raymond Laflamme,et al.  An Introduction to Quantum Computing , 2007, Quantum Inf. Comput..

[187]  E. Knill,et al.  Threshold Accuracy for Quantum Computation , 1996, quant-ph/9610011.

[188]  C Langer,et al.  Hyperfine coherence in the presence of spontaneous photon scattering. , 2005, Physical review letters.

[189]  David J. Wineland,et al.  Scablable Entanglement of Trapped Ions , 2000, QELS 2000.

[190]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[191]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[192]  John Preskill,et al.  Quantum accuracy threshold for concatenated distance-3 codes , 2006, Quantum Inf. Comput..

[193]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[194]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[195]  Andrew Steane How to build a 300 bit, 1 Gop quantum computer , 2004 .

[196]  Frederic T. Chong,et al.  Datapath and control for quantum wires , 2004, TACO.

[197]  L. Deslauriers,et al.  Sympathetic cooling of trapped Cd + isotopes , 2002 .

[198]  M. Freedman,et al.  Topological Quantum Computation , 2001, quant-ph/0101025.