Damping of Crank-Nicolson error oscillations

The Crank-Nicolson (CN) simulation method has an oscillatory response to sharp initial transients. The technique is convenient but the oscillations make it less popular. Several ways of damping the oscillations in two types of electrochemical computations are investigated. For a simple one-dimensional system with an initial singularity, subdivision of the first time interval into a number of equal subintervals (the Pearson method) works rather well, and so does division with exponentially increasing subintervals, where however an optimum expansion parameter must be found. This method can be computationally more expensive with some systems. The simple device of starting with one backward implicit (BI, or Laasonen) step does damp the oscillations, but not always sufficiently. For electrochemical microdisk simulations which are two-dimensional in space and using CN, the use of a first BI step is much more effective and is recommended. Division into subintervals is also effective, and again, both the Pearson method and exponentially increasing subintervals methods are effective here. Exponentially increasing subintervals are often considerably more expensive computationally. Expanding intervals over the whole simulation period, although capable of satisfactory results, for most systems will require more cpu time compared with subdivision of the first interval only.

[1]  Lesław K. Bieniasz Use of dynamically adaptive grid techniques for the solution of electrochemical kinetic equations: Part 3. An adaptive moving grid—adaptive time step strategy for problems with discontinuous boundary conditions at the electrodes , 1994 .

[2]  Roland W. Lewis,et al.  A comparison of time marching schemes for the transient heat conduction equation , 1975 .

[3]  R. M. Wightman,et al.  Microdisk electrodes: Part I. Digital simulation with a conformal map , 1989 .

[4]  George G. O'Brien,et al.  A Study of the Numerical Solution of Partial Differential Equations , 1950 .

[5]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[6]  Irina Svir,et al.  Simulation of the microdisc problem in spherical co-ordinates. Application to electrogenerated chemiluminescence , 2001 .

[7]  D. Georganopoulou,et al.  Electron transfer mediated by glucose oxidase at the liquid/liquid interface. , 2000, Faraday discussions.

[8]  Jörg Strutwolf,et al.  Digital simulation of potential step experiments using the extrapolation method , 1997 .

[9]  M. Rubinoff,et al.  Numerical solution of differential equations , 1954, AIEE-IRE '54 (Eastern).

[10]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[11]  N. J. Salamon,et al.  A self-optimizing single-step algorithm for the numerical integration of parabolic equations , 1995 .

[12]  Dieter Britz,et al.  Brute force digital simulation , 1996 .

[13]  J. Greenwood,et al.  Implicit numerical methods for the heat conduction equation , 1962 .

[14]  Leon Lapidus,et al.  Numerical Solution of Ordinary Differential Equations , 1972 .

[15]  G. Hedstrom,et al.  Numerical Solution of Partial Differential Equations , 1966 .

[16]  Ole Østerby,et al.  Some numerical investigations of the stability of electrochemical digital simulation, particularly as affected by first-order homogeneous reactions , 1994 .

[17]  Jürgen Heinze,et al.  Diffusion processes at finite (micro) disk electrodes solved by digital simulation , 1981 .

[18]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[19]  Stephen W. Feldberg,et al.  Optimization of explicit finite-difference simulation of electrochemical phenomena utilizing an exponentially expanded space grid , 1981 .

[20]  Ole Østerby,et al.  Numerical Stability of Finite Difference Algorithms for Electrochemical Kinetic Simulations. Matrix Stability Analysis of the Classic Explicit, Fully Implicit and Crank-Nicolson Methods, Extended to the 3- and 4-point Gradient Approximation at the Electrodes , 1995, Comput. Chem..

[21]  Ole Østerby,et al.  Five Ways of Reducing the Crank-Nicolson Oscillations , 2002 .

[22]  Arieh Iserles,et al.  Numerical Solution of Differential Equations , 2006 .

[23]  J. Crank,et al.  The treatment of boundary singularities in axially symmetric problems containing discs , 1977 .

[24]  J. Rannacher Kombinationswirbelfelder in realen Strömungen , 1982 .

[25]  A. R. Gourlay,et al.  The Solution of a Two-dimensional Time-dependent Diffusion Problem Concerned with Oxygen Metabolism in Tissues , 1977 .

[26]  Lesław K. Bieniasz,et al.  Finite-difference electrochemical kinetic simulations using the Rosenbrock time integration scheme , 1999 .

[27]  R. Rannacher Finite element solution of diffusion problems with irregular data , 1984 .

[28]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations , 1989 .

[29]  Stephen W. Feldberg,et al.  The Richtmyer modification of the fully implicit finite difference algorithm for simulations of electrochemical problems , 1994 .

[30]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[31]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[32]  Ole Østerby,et al.  The Effect of the Discretization of the Mixed Boundary Conditions on the Numerical Stability of the Crank-Nicolson Algorithm of Electrochemical Kinetic Simulations , 1997, Comput. Chem..

[33]  Ole Østerby,et al.  Numerical Stability of Finite Difference Algorithms for Electrochemical Kinetic Simulations: Matrix Stability Analysis of the Classic Explicit, Fully Implicit and Crank-Nicolson Methods and Typical Problems Involving Mixed Boundary Conditions , 1995, Comput. Chem..

[34]  Paolo Pastore,et al.  Performance of a numerical method based on the hopscotch algorithm and on an oblate spheroidal space coordinate-expanding time grid for simulation of v , 1991 .

[35]  Dieter Britz,et al.  The point method for electrochemical digital simulation , 1980 .

[36]  Stephen W. Feldberg,et al.  Examination of the behavior of the fully implicit finite-difference algorithm with the Richtmyer modification: behavior with an exponentially expanding time grid , 1995 .

[37]  D. Pletcher,et al.  The digital simulation of electrode processes. Procedures for conserving computer time , 1974 .

[38]  Pentti Laasonen,et al.  Über eine Methode zur Lösung der Wärmeleitungs-gleichung , 1949 .

[39]  David J. Gavaghan,et al.  An exponentially expanding mesh ideally suited to the fast and efficient simulation of diffusion processes at microdisc electrodes. 3. Application to voltammetry , 1998 .

[40]  Irving. Shain,et al.  Voltammetry with Linearly Varying Potential: Case of Irreversible Waves at Spherical Electrodes , 1959 .

[41]  Rolf Rannacher,et al.  On the smoothing property of the crank-nicolson scheme , 1982 .

[42]  Dieter Britz,et al.  Digital Simulation in Electrochemistry , 1981 .

[43]  Koichi Aoki,et al.  Formulation of the diffusion-controlled current at very small stationary disk electrodes , 1984 .

[44]  Mark W. Verbrugge,et al.  Transient diffusion and migration to a disk electrode , 1992 .

[45]  Y. Pao,et al.  Time‐Dependent Viscous Incompressible Flow past a Finite Flat Plate , 1969 .

[46]  L. K. Bieniasz,et al.  Use of dynamically adaptive grid techniques for the solution of electrochemical kinetic equations. Advantage of time step adaptation, using example of current spikes in linear potential sweep voltammograms for the EqrevEqrev-DISP reaction mechanism , 2002 .

[47]  Robert L. Lee,et al.  Don''t suppress the wiggles|they''re telling you something! Computers and Fluids , 1981 .

[48]  K. B. Oldham,et al.  Fundamentals of electrochemical science , 1993 .

[49]  Carl E. Pearson,et al.  Impulsive end condition for diffusion equation , 1965 .

[50]  David J. Evans,et al.  Linearly implicit generalized trapezoidal formulas for nonlinear differential equations , 2000, Int. J. Comput. Math..