Testing Near-Real Time Detection of Contaminated Pixels in AVHRR Composites

RESUMEPour pouvoir utiliser les images optiques composites dans le contexte des etudes sur le milieu terrestre, on doit disposer d'une methode precise et sensible pour detecter les pixels contamines par les effets atmospheriques et de surface non desires. Dans ce texte, nous avons examine la faisabilite de l'utilisation d'un algorithme developpe au depart pour l'analyse post-saison mais en mode ‘avance‘, c'est-a-dire pour l'identification des pixels contamines dans les donnees de la saison en cours. L'algorithme CECANT (Cloud Elimination from Composites using Albedo and NDVI Trend; Cihlar, 1996) utilise la reflectance du canal 1 d'AVHRR pour detecter les pixels fortement contamines (nuages brillants, neige) et l'indice NDVI (Normalized Difference Vegetation Index) pour identifier les pixels partiellement contamines au-dessus de la surface du sol. Toutefois, cette approche necessite une trajectoire saisonniere NDVI complete pour deriver les seuils adaptatifs. Comme certaines applications courantes supposen...

[1]  G. Gutman,et al.  Satellite daytime image classification for global studies of Earth's surface parameters from polar orbiters , 1992 .

[2]  V. Salomonson The Moderate Resolution Imaging Spectrometer (MODIS) , 1990 .

[3]  C. Long,et al.  Global distribution of cloud cover derived from NOAA/AVHRR operational satellite data , 1991 .

[4]  Qinghan Xiao,et al.  Land cover classification with AVHRR multichannel composites in northern environments , 1996 .

[5]  M. Derrien,et al.  Automatic cloud detection applied to NOAA-11 /AVHRR imagery , 1993 .

[6]  Dan Tarpley,et al.  The Enhanced NOAA Global Land Dataset from the Advanced Very High Resolution Radiometer , 1995 .

[7]  G. Dedieu,et al.  SMAC: a simplified method for the atmospheric correction of satellite measurements in the solar spectrum , 1994 .

[8]  P. M. Teillet,et al.  Forward piecewise linear calibration model for quasi-real time processing of AVHRR data , 1995 .

[9]  J. Cihlar Identification of contaminated pixels in AVHRR composite images for studies of land biosphere , 1996 .

[10]  Rasim Latifovic,et al.  Can interannual land surface signal be discerned in composite AVHRR data , 1998 .

[11]  J. Cihlar,et al.  Multitemporal, multichannel AVHRR data sets for land biosphere studies—Artifacts and corrections , 1997 .

[12]  Jason I. Gobat,et al.  Improved cloud detection for daytime AVHRR scenes over land , 1996 .

[13]  S. Kalluri,et al.  The Pathfinder AVHRR land data set: An improved coarse resolution data set for terrestrial monitoring , 1994 .

[14]  Dan Tarpley,et al.  Cloud screening for determination of land surface characteristics in a reduced resolution satellite data set , 1987 .

[15]  Aisheng Wu,et al.  Effects of land cover type and greenness on advanced very high resolution radiometer bidirectional reflectances : analysis and removal , 1995 .

[16]  B. Holben Characteristics of maximum-value composite images from temporal AVHRR data , 1986 .

[17]  R. Saunders,et al.  An improved method for detecting clear sky and cloudy radiances from AVHRR data , 1988 .