Oblique electron fire hose instability: Particle‐in‐cell simulations

Nonlinear properties of the oblique resonant electron fire hose instability are investigated using two‐dimensional particle‐in‐cell simulations in the Darwin approximation for weak initial growth rates. The weak electron fire hose instability has a self‐destructive nonlinear behavior; it destabilizes a nonpropagating branch which only exists for a sufficiently strong temperature anisotropy. The nonlinear evolution leads to generation of nonpropagating waves which in turn scatter electrons and reduce their temperature anisotropy. As the temperature anisotropy is being reduced, the nonpropagating branch disappears and the generated standing waves are transformed to propagating whistler waves which are rapidly damped. Consequently, the oblique electron fire hose efficiently reduces the electron temperature anisotropy.

[1]  S. Poedts,et al.  The Electron Firehose and Ordinary-Mode Instabilities in Space Plasmas , 2013, 1307.0768.

[2]  R. Schlickeiser,et al.  On the existence of Weibel instability in a magnetized plasma. II. Perpendicular wave propagation: The ordinary mode , 2012 .

[3]  P. Hellinger,et al.  Proton core-beam system in the expanding solar wind: Hybrid simulations , 2011 .

[4]  S. Landi,et al.  ON THE COMPETITION BETWEEN RADIAL EXPANSION AND COULOMB COLLISIONS IN SHAPING THE ELECTRON VELOCITY DISTRIBUTION FUNCTION: KINETIC SIMULATIONS , 2010 .

[5]  M. Ashour‐Abdalla,et al.  Generation of whistler mode emissions in the inner magnetosphere: An event study , 2010 .

[6]  Stefaan Poedts,et al.  Limits for the Firehose Instability in Space Plasmas , 2009 .

[7]  M. Maksimović,et al.  Radial evolution of nonthermal electron populations in the low‐latitude solar wind: Helios, Cluster, and Ulysses Observations , 2009 .

[8]  P. Hellinger,et al.  Oblique proton fire hose instability in the expanding solar wind: Hybrid simulations: FIRE HOSE , 2008 .

[9]  D. Burgess,et al.  Electron firehose instability: Kinetic linear theory and two‐dimensional particle‐in‐cell simulations , 2008 .

[10]  M. Maksimović,et al.  Electron temperature anisotropy constraints in the solar wind , 2008 .

[11]  Viktor K. Decyk,et al.  UPIC: A framework for massively parallel particle-in-cell codes , 2007, Comput. Phys. Commun..

[12]  M. Velli,et al.  Parallel proton fire hose instability in the expanding solar wind: Hybrid simulations , 2006 .

[13]  S. Gary,et al.  Resonant electron firehose instability: Particle-in-cell simulations , 2003 .

[14]  A. Benz,et al.  Test particle simulation of the Electron Firehose instability , 2003 .

[15]  P. Messmer Temperature isotropization in solar flare plasmas due to the electron firehose instability , 2001, astro-ph/0111303.

[16]  Daan Hubert,et al.  Electron Properties and Coulomb Collisions in the Solar Wind at 1 AU: Wind Observations , 2001 .

[17]  H. Matsumoto,et al.  Nonlinear competition between the whistler and Alfvén fire hoses , 2001 .

[18]  S. Habbal,et al.  Electron kinetic firehose instability , 2000 .

[19]  H. Matsumoto,et al.  New kinetic instability: Oblique Alfvén fire hose , 2000 .

[20]  A. Benz,et al.  ELECTRON FIREHOSE INSTABILITY AND ACCELERATION OF ELECTRONS IN SOLAR FLARES , 1999, astro-ph/0001262.

[21]  S. Peter Gary,et al.  Theory of Space Plasma Microinstabilities , 1993 .

[22]  J. Phillips,et al.  Radial evolution of solar wind thermal electron distributions due to expansion and collisions , 1990 .

[23]  J. Phillips,et al.  Anisotropic thermal electron distributions in the solar wind , 1989 .

[24]  Dennis W. Hewett,et al.  Elimination of electromagnetic radiation in plasma simulation: The Darwin or magneto inductive approximation , 1985 .

[25]  H. Völk,et al.  New plasma instabilities in the solar wind , 1970 .