Cost-Effective $2\times 2$ Silicon Nitride Mach-Zehnder Interferometric (MZI) Thermo-Optic Switch

We present cost effective <inline-formula> <tex-math notation="LaTeX">$2 \times 2$ </tex-math></inline-formula> silicon nitride Mach-Zehnder interferometric thermo-optic switches with 1 mm-length phase shifter. Devices were fabricated on a bulk silicon wafer with CMOS compatible process. The footprint was ~0.7 mm<sup>2</sup>. For the device designed for <inline-formula> <tex-math notation="LaTeX">$\lambda \!\!\sim 1310$ </tex-math></inline-formula> nm, we demonstrated ~26.8-dB crosstalk, 0.23-dB insertion loss, and 17.25-<inline-formula> <tex-math notation="LaTeX">$\mu \text{s}$ </tex-math></inline-formula> switching speed at <inline-formula> <tex-math notation="LaTeX">$\lambda \!\!\sim 1325.8$ </tex-math></inline-formula> nm. Similarly, <inline-formula> <tex-math notation="LaTeX">$\lambda \!\!\sim 1550$ </tex-math></inline-formula> nm device showed the ~24.7-dB crosstalk, 0.48-dB insertion loss, and 17.48-<inline-formula> <tex-math notation="LaTeX">$\mu \text{s}$ </tex-math></inline-formula> switching speed at <inline-formula> <tex-math notation="LaTeX">$\lambda \!\!\sim 1550.8$ </tex-math></inline-formula> nm. The measured operating power was 55.6 and 64.4 mW at <inline-formula> <tex-math notation="LaTeX">$\lambda \!\!\sim 1325.8$ </tex-math></inline-formula> nm and <inline-formula> <tex-math notation="LaTeX">$\lambda \!\!\sim $ </tex-math></inline-formula>1550.8 nm, respectively.

[1]  A. Arbabi,et al.  Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiO(x) using microring resonances. , 2013, Optics letters.

[2]  Sailing He,et al.  Low-loss and broadband 2 × 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers. , 2016, Optics letters.

[3]  Takafumi Taniguchi,et al.  High-speed and compact non-blocking 8×8 InAlGaAs/InAlAs Mach-Zehnder-type optical switch fabric , 2014, OFC 2014.

[4]  A. Leinse,et al.  Ultra-low-loss high-aspect-ratio Si3N4 waveguides. , 2011, Optics express.

[5]  R. Baets,et al.  Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532–900 nm Wavelength Window Fabricated Within a CMOS Pilot Line , 2013, IEEE Photonics Journal.

[6]  Joris Van Campenhout,et al.  Low-power, 2 x 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks. , 2009, Optics express.

[7]  Xinwan Li,et al.  Broadband 4 $\times$ 4 Nonblocking Silicon Electrooptic Switches Based on Mach–Zehnder Interferometers , 2015, IEEE Photonics Journal.

[8]  V. Zwiller,et al.  Thermo-Optic Characterization of Silicon Nitride Resonators for Cryogenic Photonic Circuits , 2016, IEEE Photonics Journal.

[9]  J. Luongo IR Study of Amorphous Silicon Nitride Films , 1984 .

[10]  A. Brimont,et al.  High performace silicon 2x2 optical switch based on a thermo-optically tunable multimode interference coupler and efficient electrodes. , 2016, Optics express.

[11]  Robert Puers,et al.  Low Loss CMOS-Compatible PECVD Silicon Nitride Waveguides and Grating Couplers for Blue Light Optogenetic Applications , 2016, IEEE Photonics Journal.

[12]  B. Maniscalco,et al.  Thin film thickness measurements using Scanning White Light Interferometry , 2014 .

[13]  N. Harris,et al.  Efficient, compact and low loss thermo-optic phase shifter in silicon. , 2014, Optics express.

[14]  M. Smit,et al.  Monolithically Integrated InP 1 $\times$ 16 Optical Switch With Wavelength-Insensitive Operation , 2010, IEEE Photonics Technology Letters.

[15]  Jiho Joo,et al.  Compact-sized high-modulation-efficiency silicon Mach-Zehnder modulator based on a vertically dipped depletion junction phase shifter for chip-level integration. , 2014, Optics letters.

[16]  T. Goh,et al.  Silica-based waveguide-type 16 x 16 optical switch module incorporating driving circuits , 2003, IEEE Photonics Technology Letters.

[17]  Total internal reflection optical switch using the reverse breakdown of a pn junction in silicon. , 2015, Optics letters.

[18]  Ken Tanizawa,et al.  Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter. , 2015, Optics express.

[19]  Masayuki Okuno,et al.  Silica-based 8/spl times/8 optical matrix switch integrating new switching units with large fabrication tolerance , 1999 .

[20]  Florian Merget,et al.  Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths. , 2013, Optics express.

[21]  Hitoshi Kawashima,et al.  Low-crosstalk 2 x 2 thermo-optic switch with silicon wire waveguides. , 2010, Optics express.

[22]  Hankyu Chi,et al.  Silicon photonic receiver and transmitter operating up to 36 Gb/s for λ~1550 nm. , 2015, Optics express.

[23]  T. Hall,et al.  Improved silica-PLC Mach-Zehnder interferometer type optical switches with error dependence compensation of directional coupler , 2017 .

[24]  R. Nawrodt,et al.  Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures , 2012 .

[25]  Hiroshi Takahashi,et al.  Loss reduction of silica-based 8 × 8 optical matrix switch by optimizing waveguide crossings using WFM method , 2007, IEICE Electron. Express.

[26]  Jiho Joo,et al.  Single-chip photonic transceiver based on bulk-silicon, as a chip-level photonic I/O platform for optical interconnects , 2015, Scientific reports.

[27]  G. Cong,et al.  Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer. , 2015, Optics express.

[28]  Takuo Tanemura,et al.  Monolithically Integrated InP 1 16 Optical Switch With Wavelength-Insensitive Operation , 2010 .

[29]  Paul MUELLNER,et al.  CMOS-compatible low-loss silicon nitride waveguide integration platform for interferometric sensing , 2016 .

[30]  Gyungock Kim,et al.  Low-loss single-mode operation in silicon multi-mode arrayed waveguide grating with a double-etched inverse taper structure , 2017 .