Sufficient conditions for strong local minima: the case of C 1 extremals
暂无分享,去创建一个
[1] Michiel Hazewinkel,et al. Cartesian currents in the calculus of variations , 2003 .
[2] M. Giaquinta,et al. Calculus of Variations I , 1995 .
[3] Quasiconvexity and uniqueness of stationary points in the multi-dimensional calculus of variations , 2003 .
[4] J. Ball. W^ quasiconvexity and variational problems for multiples integrals , 1984 .
[5] R. J. Knops,et al. Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity , 1984 .
[6] L. Evans. Measure theory and fine properties of functions , 1992 .
[7] Remarks on quasiconvexity and stability of equilibria for variational integrals , 1992 .
[8] A. Taheri. Local Minimizers and Quasiconvexity – the Impact of Topology , 2005 .
[9] WEIERSTRASS CONDITION FOR THE GENERAL BASIC VARIATIONAL PROBLEM , 1995 .
[10] Charles B. Morrey,et al. QUASI-CONVEXITY AND THE LOWER SEMICONTINUITY OF MULTIPLE INTEGRALS , 1952 .
[11] Irene Fonseca,et al. Analysis of Concentration and Oscillation Effects Generated by Gradients , 1998 .
[12] Bernard Dacorogna,et al. Quasiconvexity and relaxation of nonconvex problems in the calculus of variations , 1982 .
[13] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[14] J. Ball,et al. W1,p-quasiconvexity and variational problems for multiple integrals , 1984 .
[15] M. Giaquinta. Cartesian currents in the calculus of variations , 1983 .
[16] Magnus R. Hestenes,et al. Sufficient Conditions for Multiple Integral Problems in the Calculus of Variations , 1948 .
[17] R. Kohn,et al. Optimal design and relaxation of variational problems, III , 1986 .
[18] P. Pedregal. Parametrized measures and variational principles , 1997 .
[19] M. Hestenes. Calculus of variations and optimal control theory , 1966 .
[20] On homotopy conditions and the existence of multiple equilibria in finite elasticity , 1997 .
[21] H. Simpson,et al. On the positivity of the second variation in finite elasticity , 1987 .
[22] J. Ball. A version of the fundamental theorem for young measures , 1989 .
[23] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[24] Sufficiency theorems for local minimizers of the multiple integrals of the calculus of variations , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[25] Irene Fonseca,et al. Lower semicontinuity of surface energies , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[26] C. B. Morrey. Multiple Integrals in the Calculus of Variations , 1966 .
[27] W. Rudin. Real and complex analysis , 1968 .
[28] Jan Kristensen,et al. Partial Regularity of Strong Local Minimizers in the Multi-Dimensional Calculus of Variations , 2003 .
[29] Lawrence C. Evans,et al. Weak convergence methods for nonlinear partial differential equations , 1990 .
[30] H. Fédérer. Geometric Measure Theory , 1969 .
[31] Théophile De Donder,et al. Théorie invariantive du calcul des variations , 1936 .
[32] Stefan Hildebrandt,et al. The Lagrangian formalism , 1996 .
[33] Robert V. Kohn,et al. Local minimisers and singular perturbations , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[34] J. Ball. Convexity conditions and existence theorems in nonlinear elasticity , 1976 .
[35] Constantin Carathéodory,et al. Calculus of variations and partial differential equations of the first order , 1965 .
[36] A. Majda,et al. Oscillations and concentrations in weak solutions of the incompressible fluid equations , 1987 .
[37] Morton E. Gurtin,et al. Two-phase deformations of elastic solids , 1983 .
[38] Jr. László Székelyhidi. The Regularity of Critical Points of Polyconvex Functionals , 2004 .
[39] J. Ball,et al. Hysteresis During Stress-Induced Variant Rearrangement , 1995 .
[40] Paolo Marcellini,et al. Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals , 1985 .
[41] J. Ball. The calculus of variations and materials science , 1998 .
[42] Miroslav Šilhavý,et al. The Mechanics and Thermodynamics of Continuous Media , 2002 .
[43] W. Reid. Sufficient Conditions by Expansion Methods for the Problem of Bolza in the Calculus of Variations , 1937 .
[44] H. Schubert,et al. O. D. Kellogg, Foundations of Potential Theory. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 31). X + 384 S. m. 30 Fig. Berlin/Heidelberg/New York 1967. Springer‐Verlag. Preis geb. DM 32,– , 1969 .
[45] I. P. Natanson,et al. Theory of Functions of a Real Variable , 1955 .
[46] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[47] A. Taheri. On Critical Points of Functionals with Polyconvex Integrands , 2002 .
[48] Jerrold E. Marsden,et al. Quasiconvexity at the boundary, positivity of the second variation and elastic stability , 1984 .
[49] E. Stein. Singular Integrals and Di?erentiability Properties of Functions , 1971 .
[50] S. Brendle,et al. Calculus of Variations , 1927, Nature.
[51] L. Young. Lectures on the Calculus of Variations and Optimal Control Theory , 1980 .
[52] Yury Grabovsky,et al. Direct approach to the problem of strong local minima in calculus of variations , 2005, math/0509702.
[53] G. Duclos. New York 1987 , 2000 .
[54] Gerhard Eduard Moritz Armsen. GEODESIC FIELDS IN THE CALCULUS-OF-VARIATIONS FOR MULTIPLE-INTEGRALS , 1973 .
[55] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[56] Hermann Weyl,et al. Geodesic Fields in the Calculus of Variation for Multiple Integrals , 1935 .