FES: A System for Combining Face, Ear and Signature Biometrics Using Rank Level Fusion

Performance rate of unimodal biometric system is often reduced due to physiological defects, user mode and the environment. Multibiometric systems seek to alleviate some of these drawbacks by providing multiple evidences of the same identity. In this paper, we develop a multimodal biometric system, FES, based on principal component analysis (PCA) and Fisher's linear discriminant (FLD) methods that will use face, ear and signature for identity identification and rank level fusion for consolidate the results obtained from these monomodal matchers. The ranks of individual matchers are combined using the Borda count method and the logistic regression method. The results indicate that fusing individual modalities improve the overall performance of the biometric system.

[1]  Julian Fiérrez,et al.  A Comparative Evaluation of Fusion Strategies for Multimodal Biometric Verification , 2003, AVBPA.

[2]  John Daugman,et al.  High Confidence Visual Recognition of Persons by a Test of Statistical Independence , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  A. Agresti An introduction to categorical data analysis , 1997 .

[4]  Xudong Jiang,et al.  Exploiting global and local decisions for multimodal biometrics verification , 2004, IEEE Transactions on Signal Processing.

[5]  Helen C. Shen,et al.  Personal Verification Using Palmprint and Hand Geometry Biometric , 2003, AVBPA.

[6]  Tieniu Tan,et al.  Combining Face and Iris Biometrics for Identity Verification , 2003, AVBPA.

[7]  Anil K. Jain,et al.  Integrating Faces and Fingerprints for Personal Identification , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Rama Chellappa,et al.  Face recognition using discriminant eigenvectors , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[9]  Anil K. Jain,et al.  Combining multiple matchers for a high security fingerprint verification system , 1999, Pattern Recognit. Lett..

[10]  Marian Stewart Bartlett,et al.  Independent component representations for face recognition , 1998, Electronic Imaging.

[11]  M. A. Carreira-Perpinan,et al.  Compression neural networks for feature extraction: Application to human recognition from ear images , 1995 .

[12]  Robert Frischholz,et al.  BioID: A Multimodal Biometric Identification System , 2000, Computer.

[13]  Patrick J. Flynn,et al.  Multi-Modal 2D and 3D Biometrics for Face Recognition , 2003, AMFG.

[14]  Sargur N. Srihari,et al.  Image Pattern Recognition - Synthesis and Analysis in Biometrics , 2007, Image Pattern Recognition.

[15]  Alvin F. Martin,et al.  The DET curve in assessment of detection task performance , 1997, EUROSPEECH.

[16]  Andy Harter,et al.  Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[17]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[18]  Arun Ross,et al.  Information fusion in biometrics , 2003, Pattern Recognit. Lett..

[19]  Hyun-Chul Kim,et al.  Face recognition using the mixture-of-eigenfaces method , 2002, Pattern Recognit. Lett..

[20]  Zezhi Chen,et al.  Face Recognition: A Comparison of Appearance-Based Approaches , 2003, DICTA.

[21]  Arun Ross,et al.  Feature level fusion of hand and face biometrics , 2005, SPIE Defense + Commercial Sensing.

[22]  Arun Ross,et al.  Handbook of Multibiometrics , 2006, The Kluwer international series on biometrics.

[23]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[25]  Lambert Schomaker,et al.  Variants of the Borda count method for combining ranked classifier hypotheses , 2000 .