Self-interaction of transmembrane helices representing pre-clusters from the human single-span membrane proteins

MOTIVATION Most integral membrane proteins form dimeric or oligomeric complexes. Oligomerization is frequently supported by the non-covalent interaction of transmembrane helices. It is currently not clear how many high-affinity transmembrane domains (TMD) exist in a proteome and how specific their interactions are with respect to preferred contacting faces and their underlying residue motifs. RESULTS We first identify a threshold of 55% sequence similarity, which demarcates the border between meaningful alignments of TMDs and chance alignments. Clustering the human single-span membrane proteome using this threshold groups ~40% of the TMDs. The homotypic interaction of the TMDs representing the 33 largest clusters was systematically investigated under standardized conditions. The results reveal a broad distribution of relative affinities. High relative affinity frequently coincides with (i) the existence of a preferred helix-helix interface and (ii) sequence specificity as indicated by reduced affinity after mutating conserved residues. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

[1]  D. Engelman,et al.  Computation and mutagenesis suggest a right‐handed structure for the synaptobrevin transmembrane dimer , 2001, Proteins.

[2]  J. Trotter,et al.  Compartmentation of Fyn Kinase with Glycosylphosphatidylinositol-anchored Molecules in Oligodendrocytes Facilitates Kinase Activation during Myelination* , 1999, The Journal of Biological Chemistry.

[3]  Jorja G. Henikoff,et al.  PHAT: a transmembrane-specific substitution matrix , 2000, Bioinform..

[4]  J. Miners,et al.  Homodimerization of UDP-glucuronosyltransferase 2B7 (UGT2B7) and identification of a putative dimerization domain by protein homology modeling. , 2011, Biochemical pharmacology.

[5]  Vikas Nanda,et al.  Dimerization of the Transmembrane Domain of Integrin αIIb Subunit in Cell Membranes* , 2004, Journal of Biological Chemistry.

[6]  Moti Zviling,et al.  How important are transmembrane helices of bitopic membrane proteins? , 2007, Biochimica et biophysica acta.

[7]  D. Engelman,et al.  Involvement of transmembrane domain interactions in signal transduction by alpha/beta integrins. , 2004, The Journal of biological chemistry.

[8]  D. Langosch,et al.  A Conserved Membrane-spanning Amino Acid Motif Drives Homomeric and Supports Heteromeric Assembly of Presynaptic SNARE Proteins* , 2000, The Journal of Biological Chemistry.

[9]  D. Schneider,et al.  Two GxxxG-like motifs facilitate promiscuous interactions of the human ErbB transmembrane domains. , 2009, Journal of molecular biology.

[10]  Donald M. Engelman,et al.  GALLEX, a Measurement of Heterologous Association of Transmembrane Helices in a Biological Membrane* , 2003, The Journal of Biological Chemistry.

[11]  B. Gumbiner,et al.  Structural Elements Necessary for Oligomerization, Trafficking, and Cell Sorting Function of Paraxial Protocadherin* , 2007, Journal of Biological Chemistry.

[12]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[13]  Anton Arkhipov,et al.  Architecture and Membrane Interactions of the EGF Receptor , 2013, Cell.

[14]  D. Schneider,et al.  Transmembrane helix-helix interactions are modulated by the sequence context and by lipid bilayer properties. , 2012, Biochimica et biophysica acta.

[15]  Alessandro Senes,et al.  Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. , 2004, Current opinion in structural biology.

[16]  G. Schiavo,et al.  Vesicle-associated membrane protein-2 (synaptobrevin-2) forms a complex with synaptophysin. , 1995, The Biochemical journal.

[17]  Sebastian Kube,et al.  Homotypic interaction and amino acid distribution of unilaterally conserved transmembrane helices. , 2012, Journal of molecular biology.

[18]  A. Krogh,et al.  A combined transmembrane topology and signal peptide prediction method. , 2004, Journal of molecular biology.

[19]  A. Rath,et al.  Surface recognition elements of membrane protein oligomerization , 2008, Proteins.

[20]  Karen Hecht,et al.  Aromatic and cation-pi interactions enhance helix-helix association in a membrane environment. , 2007, Biochemistry.

[21]  Dmitrij Frishman,et al.  Phenylalanine promotes interaction of transmembrane domains via GxxxG motifs. , 2007, Journal of molecular biology.

[22]  Chungho Kim,et al.  The structure of the integrin αIIbβ3 transmembrane complex explains integrin transmembrane signalling , 2009, The EMBO journal.

[23]  P. Schwille,et al.  Focus on composition and interaction potential of single‐pass transmembrane domains , 2010, Proteomics.

[24]  Wei Wang,et al.  Tests of Integrin Transmembrane Domain Homo-oligomerization during Integrin Ligand Binding and Signaling* , 2010, The Journal of Biological Chemistry.

[25]  D. Langosch,et al.  The dimerization motif of the glycophorin A transmembrane segment in membranes: Importance of glycine residues , 1998, Protein science : a publication of the Protein Society.

[26]  Alessandro Senes,et al.  Consensus motif for integrin transmembrane helix association , 2009, Proceedings of the National Academy of Sciences.

[27]  R. Germain Binding domain regulation of MHC class II molecule assembly, trafficking, fate, and function. , 1995, Seminars in immunology.

[28]  Donald M. Engelman,et al.  Involvement of Transmembrane Domain Interactions in Signal Transduction by α/β Integrins* , 2004, Journal of Biological Chemistry.

[29]  T. Springer,et al.  Integrin structures and conformational signaling. , 2006, Current opinion in cell biology.

[30]  Edwin Li,et al.  Transmembrane helix dimerization: beyond the search for sequence motifs. , 2012, Biochimica et biophysica acta.

[31]  D. Engelman,et al.  Helical membrane protein folding, stability, and evolution. , 2000, Annual review of biochemistry.

[32]  D. Langosch,et al.  Mutations affecting transmembrane segment interactions impair adhesiveness of E-cadherin. , 1999, Journal of cell science.

[33]  James H. Prestegard,et al.  A Transmembrane Helix Dimer: Structure and Implications , 1997, Science.

[34]  C DeLisi,et al.  Interaction between proteins localized in membranes. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Reinhard Jahn,et al.  Helical extension of the neuronal SNARE complex into the membrane , 2009, Nature.

[36]  Mathias W. Hofmann,et al.  Self-interaction of a SNARE transmembrane domain promotes the hemifusion-to-fusion transition. , 2006, Journal of molecular biology.

[37]  J. Schlessinger,et al.  Identification of a novel contactin‐associated transmembrane receptor with multiple domains implicated in protein–protein interactions , 1997, The EMBO journal.

[38]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[39]  D. Frishman,et al.  Ionic interactions promote transmembrane helix-helix association depending on sequence context. , 2010, Journal of molecular biology.

[40]  D. Schneider,et al.  Transmembrane helix-helix interactions involved in ErbB receptor signaling , 2010, Cell adhesion & migration.

[41]  T. Jardetzky,et al.  The structure of MHC class II: a role for dimer of dimers. , 1995, Seminars in immunology.

[42]  P. Tien,et al.  Crystal structure of myeloid cell activating receptor leukocyte Ig-like receptor A2 (LILRA2/ILT1/LIR-7) domain swapped dimer: molecular basis for its non-binding to MHC complexes. , 2009, Journal of molecular biology.

[43]  H. Fritz,et al.  Dimerisation of the glycophorin A transmembrane segment in membranes probed with the ToxR transcription activator. , 1996, Journal of molecular biology.

[44]  M. Augustus,et al.  Characterization of siglec-5, a novel glycoprotein expressed on myeloid cells related to CD33. , 1998, Blood.

[45]  D. Engelman,et al.  Motifs of serine and threonine can drive association of transmembrane helices. , 2002, Journal of molecular biology.

[46]  I. Arkin,et al.  Experimental Measurement of the Strength of a Cα−H···O Bond in a Lipid Bilayer , 2004 .

[47]  J. Torres,et al.  Transmembrane helices that form two opposite homodimeric interactions: An asparagine scan study of αM and β2 integrins , 2008, Protein science : a publication of the Protein Society.

[48]  D. Langosch,et al.  Dimerization of the synaptic vesicle protein synaptobrevin (vesicle-associated membrane protein) II depends on specific residues within the transmembrane segment. , 1997, European journal of biochemistry.

[49]  T. Ulmer,et al.  Interactions of platelet integrin alphaIIb and beta3 transmembrane domains in mammalian cell membranes and their role in integrin activation. , 2009, Blood.

[50]  D. Langosch,et al.  A Heptad Motif of Leucine Residues Found in Membrane Proteins Can Drive Self-assembly of Artificial Transmembrane Segments* , 1999, The Journal of Biological Chemistry.

[51]  Stephanie Unterreitmeier,et al.  Tryptophan supports interaction of transmembrane helices. , 2005, Journal of molecular biology.

[52]  J. Freed,et al.  A scissors mechanism for stimulation of SNARE-mediated lipid mixing by cholesterol , 2009, Proceedings of the National Academy of Sciences.

[53]  D. Langosch,et al.  Synaptobrevin transmembrane domain dimerization-revisited. , 2004, Biochemistry.

[54]  B. Rost Twilight zone of protein sequence alignments. , 1999, Protein engineering.

[55]  S. O. Smith,et al.  Structure of the transmembrane dimer interface of glycophorin A in membrane bilayers. , 2001, Biochemistry.

[56]  S. Constantinescu,et al.  Active and inactive orientations of the transmembrane and cytosolic domains of the erythropoietin receptor dimer. , 2003, Molecular cell.

[57]  Renhao Li,et al.  Activation of integrin alphaIIbbeta3 by modulation of transmembrane helix associations. , 2003, Science.

[58]  Renhao Li,et al.  Oligomerization of the integrin αIIbβ3: Roles of the transmembrane and cytoplasmic domains , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[59]  A Kusumi,et al.  Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. , 2001, Biophysical journal.

[60]  Dae-Hyuk Kweon,et al.  Regulation of neuronal SNARE assembly by the membrane , 2003, Nature Structural Biology.

[61]  Y. Shai,et al.  The composition rather than position of polar residues (QxxS) drives aspartate receptor transmembrane domain dimerization in vivo. , 2004, Biochemistry.