Asymptotics for the Turán number of Berge-K2, t
暂无分享,去创建一个
[1] Richard P. Anstee,et al. A Survey of Forbidden Configuration Results , 2013 .
[2] Dániel Gerbner,et al. Extremal Finite Set Theory , 2018 .
[3] Jacques Verstraëte,et al. A survey of Turan problems for expansions , 2016 .
[4] Ervin Györi,et al. 3-uniform hypergraphs avoiding a given odd cycle , 2012, Comb..
[5] Paul Erdös,et al. On some extremal problems on r-graphs , 1971, Discret. Math..
[6] Attila Sali,et al. Forbidden Families of Minimal Quadratic and Cubic Configurations , 2017, Electron. J. Comb..
[7] Cory Palmer,et al. Counting copies of a fixed subgraph in F-free graphs , 2018, Eur. J. Comb..
[8] Craig Timmons. On $r$-Uniform Linear Hypergraphs with no Berge-$K_{2, t}$ , 2017, Electron. J. Comb..
[9] Felix Lazebnik,et al. On Hypergraphs of Girth Five , 2003, Electron. J. Comb..
[10] Noga Alon,et al. Many T copies in H-free graphs , 2015, Electron. Notes Discret. Math..
[11] Cory Palmer,et al. General lemmas for Berge-Turán hypergraph problems , 2018, Eur. J. Comb..
[12] Zoltán Füredi,et al. New Asymptotics for Bipartite Turán Numbers , 1996, J. Comb. Theory, Ser. A.
[13] M. Simonovits,et al. The History of Degenerate (Bipartite) Extremal Graph Problems , 2013, 1306.5167.
[14] Ervin Györi,et al. Hypergraphs with no cycle of length 4 , 2012, Discret. Math..
[15] Ervin Györi,et al. Asymptotics for Turán numbers of cycles in 3-uniform linear hypergraphs , 2017, J. Comb. Theory, Ser. A.
[16] Noga Alon,et al. Norm-Graphs: Variations and Applications , 1999, J. Comb. Theory, Ser. B.
[17] Zoltán Füredi,et al. On 3-uniform hypergraphs without a cycle of a given length , 2014, Discret. Appl. Math..
[18] M. Simonovits,et al. Cycles of even length in graphs , 1974 .
[19] Alexandr V. Kostochka,et al. Turán problems and shadows I: Paths and cycles , 2013, J. Comb. Theory, Ser. A.
[20] Alexandr V. Kostochka,et al. Turán Problems and Shadows III: Expansions of Graphs , 2014, SIAM J. Discret. Math..
[21] Béla Bollobás,et al. Pentagons vs. triangles , 2008, Discret. Math..
[22] Ervin Györi,et al. Hypergraphs with No Cycle of a Given Length , 2012, Combinatorics, Probability and Computing.
[23] Jie Ma,et al. Cycles of given lengths in hypergraphs , 2016, J. Comb. Theory, Ser. B.
[24] Dániel Gerbner,et al. Extremal Results for Berge Hypergraphs , 2015, SIAM J. Discret. Math..
[25] Lajos Rónyai,et al. Norm-graphs and bipartite turán numbers , 1996, Comb..
[26] Gyula Y. Katona,et al. Hypergraph Extensions of the Erdos-Gallai Theorem , 2010, Electron. Notes Discret. Math..
[27] Richard P. Anstee,et al. Forbidden Berge Hypergraphs , 2016, Electron. J. Comb..
[28] V. Sós,et al. On a problem of K. Zarankiewicz , 1954 .
[29] P. Erdijs. ON SOME EXTREMAL PROBLEMS ON r-GRAPHS , 1971 .
[30] Máté Vizer,et al. On the maximum size of connected hypergraphs without a path of given length , 2017, Discret. Math..
[31] Alexandr V. Kostochka,et al. Turán problems and shadows II: Trees , 2014, J. Comb. Theory, Ser. B.
[32] Gyula Y. Katona,et al. Hypergraph extensions of the Erdős-Gallai Theorem , 2010, Eur. J. Comb..
[33] Peter Keevash. Surveys in Combinatorics 2011: Hypergraph Turán problems , 2011 .
[34] Ervin Györi,et al. An Erdős-Gallai type theorem for uniform hypergraphs , 2016, Eur. J. Comb..
[35] Ruth Luo,et al. The maximum number of cliques in graphs without long cycles , 2017, J. Comb. Theory B.
[36] Jeong Han Kim,et al. Nearly perfect matchings in regular simple hypergraphs , 1997 .