Asymptotics for the Turán number of Berge-K2, t

Abstract Let F be a graph. A hypergraph is called Berge-F if it can be obtained by replacing each edge in F by a hyperedge containing it. Let F be a family of graphs. The Turan number of the family Berge- F is the maximum possible number of edges in an r-uniform hypergraph on n vertices containing no Berge-F as a subhypergraph (for every F ∈ F ) and is denoted by e x r ( n , F ) . We determine the asymptotics for the Turan number of Berge- K 2 , t by showing e x 3 ( n , K 2 , t ) = ( 1 + o ( 1 ) ) 1 6 ( t − 1 ) 3 / 2 ⋅ n 3 / 2 for any given t ≥ 7 . We study the analogous question for linear hypergraphs and show e x 3 ( n , { C 2 , K 2 , t } ) = ( 1 + o t ( 1 ) ) 1 6 t − 1 ⋅ n 3 / 2 . We also prove general upper and lower bounds on the Turan numbers of a class of graphs including e x r ( n , K 2 , t ) , e x r ( n , { C 2 , K 2 , t } ) , and e x r ( n , C 2 k ) for r ≥ 3 . Our bounds improve the results of Gerbner and Palmer [18] , Furedi and Ozkahya [15] , Timmons [37] , and provide a new proof of a result of Jiang and Ma [26] .

[1]  Richard P. Anstee,et al.  A Survey of Forbidden Configuration Results , 2013 .

[2]  Dániel Gerbner,et al.  Extremal Finite Set Theory , 2018 .

[3]  Jacques Verstraëte,et al.  A survey of Turan problems for expansions , 2016 .

[4]  Ervin Györi,et al.  3-uniform hypergraphs avoiding a given odd cycle , 2012, Comb..

[5]  Paul Erdös,et al.  On some extremal problems on r-graphs , 1971, Discret. Math..

[6]  Attila Sali,et al.  Forbidden Families of Minimal Quadratic and Cubic Configurations , 2017, Electron. J. Comb..

[7]  Cory Palmer,et al.  Counting copies of a fixed subgraph in F-free graphs , 2018, Eur. J. Comb..

[8]  Craig Timmons On $r$-Uniform Linear Hypergraphs with no Berge-$K_{2, t}$ , 2017, Electron. J. Comb..

[9]  Felix Lazebnik,et al.  On Hypergraphs of Girth Five , 2003, Electron. J. Comb..

[10]  Noga Alon,et al.  Many T copies in H-free graphs , 2015, Electron. Notes Discret. Math..

[11]  Cory Palmer,et al.  General lemmas for Berge-Turán hypergraph problems , 2018, Eur. J. Comb..

[12]  Zoltán Füredi,et al.  New Asymptotics for Bipartite Turán Numbers , 1996, J. Comb. Theory, Ser. A.

[13]  M. Simonovits,et al.  The History of Degenerate (Bipartite) Extremal Graph Problems , 2013, 1306.5167.

[14]  Ervin Györi,et al.  Hypergraphs with no cycle of length 4 , 2012, Discret. Math..

[15]  Ervin Györi,et al.  Asymptotics for Turán numbers of cycles in 3-uniform linear hypergraphs , 2017, J. Comb. Theory, Ser. A.

[16]  Noga Alon,et al.  Norm-Graphs: Variations and Applications , 1999, J. Comb. Theory, Ser. B.

[17]  Zoltán Füredi,et al.  On 3-uniform hypergraphs without a cycle of a given length , 2014, Discret. Appl. Math..

[18]  M. Simonovits,et al.  Cycles of even length in graphs , 1974 .

[19]  Alexandr V. Kostochka,et al.  Turán problems and shadows I: Paths and cycles , 2013, J. Comb. Theory, Ser. A.

[20]  Alexandr V. Kostochka,et al.  Turán Problems and Shadows III: Expansions of Graphs , 2014, SIAM J. Discret. Math..

[21]  Béla Bollobás,et al.  Pentagons vs. triangles , 2008, Discret. Math..

[22]  Ervin Györi,et al.  Hypergraphs with No Cycle of a Given Length , 2012, Combinatorics, Probability and Computing.

[23]  Jie Ma,et al.  Cycles of given lengths in hypergraphs , 2016, J. Comb. Theory, Ser. B.

[24]  Dániel Gerbner,et al.  Extremal Results for Berge Hypergraphs , 2015, SIAM J. Discret. Math..

[25]  Lajos Rónyai,et al.  Norm-graphs and bipartite turán numbers , 1996, Comb..

[26]  Gyula Y. Katona,et al.  Hypergraph Extensions of the Erdos-Gallai Theorem , 2010, Electron. Notes Discret. Math..

[27]  Richard P. Anstee,et al.  Forbidden Berge Hypergraphs , 2016, Electron. J. Comb..

[28]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[29]  P. Erdijs ON SOME EXTREMAL PROBLEMS ON r-GRAPHS , 1971 .

[30]  Máté Vizer,et al.  On the maximum size of connected hypergraphs without a path of given length , 2017, Discret. Math..

[31]  Alexandr V. Kostochka,et al.  Turán problems and shadows II: Trees , 2014, J. Comb. Theory, Ser. B.

[32]  Gyula Y. Katona,et al.  Hypergraph extensions of the Erdős-Gallai Theorem , 2010, Eur. J. Comb..

[33]  Peter Keevash Surveys in Combinatorics 2011: Hypergraph Turán problems , 2011 .

[34]  Ervin Györi,et al.  An Erdős-Gallai type theorem for uniform hypergraphs , 2016, Eur. J. Comb..

[35]  Ruth Luo,et al.  The maximum number of cliques in graphs without long cycles , 2017, J. Comb. Theory B.

[36]  Jeong Han Kim,et al.  Nearly perfect matchings in regular simple hypergraphs , 1997 .