Molecular mechanism of engineered Zymomonas mobilis to furfural and acetic acid stress

[1]  Celso Tadao Miasaki,et al.  Valorization of semi-solid by-product from distillation of cellulosic ethanol into blends for heating and power , 2021, Waste Disposal & Sustainable Energy.

[2]  A. Al-Gheethi,et al.  Influence of Nitrogen and Phosphorus on Microalgal Growth, Biomass, Lipid, and Fatty Acid Production: An Overview , 2021, Cells.

[3]  P. Talia,et al.  Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications, and challenges , 2021, Biotechnology for Biofuels.

[4]  M. Nawaz,et al.  Insight of transcriptional regulators reveals the tolerance mechanism of carpet-grass (Axonopus compressus) against drought , 2020, BMC plant biology.

[5]  J. Peters,et al.  A High-efficacy CRISPRi System for Gene Function Discovery in Zymomonas mobilis , 2020, bioRxiv.

[6]  P. Kynclova,et al.  Composite index as a measure on achieving Sustainable Development Goal 9 (SDG-9) industry-related targets: The SDG-9 index , 2020 .

[7]  Mingxiong He,et al.  Development and characterization of acidic-pH-tolerant mutants of Zymomonas mobilis through adaptation and next-generation sequencing-based genome resequencing and RNA-Seq , 2020, Biotechnology for Biofuels.

[8]  Guoquan Hu,et al.  Biochar-mediated enhanced ethanol fermentation (BMEEF) in Zymomonas mobilis under furfural and acetic acid stress , 2020, Biotechnology for Biofuels.

[9]  M. Himmel,et al.  Metabolic engineering of Zymomonas mobilis for anaerobic isobutanol production , 2020, Biotechnology for Biofuels.

[10]  A. Afendra,et al.  Saccharomyces cerevisiae and its industrial applications , 2020, AIMS microbiology.

[11]  Mingxiong He,et al.  Genome shuffling enhances stress tolerance of Zymomonas mobilis to two inhibitors , 2019, Biotechnology for Biofuels.

[12]  Yingjun Li,et al.  Primed acquisition and microhomology-mediated end-joining cooperate to confer specific CRISPR immunity against invasive genetic elements , 2019, bioRxiv.

[13]  Yung-Hua Li,et al.  ClpP is required for proteolytic regulation of type II toxin–antitoxin systems and persister cell formation in Streptococcus mutans , 2019, Access microbiology.

[14]  J. Reed,et al.  2H and 13C metabolic flux analysis elucidates in vivo thermodynamics of the ED pathway in Zymomonas mobilis. , 2019, Metabolic engineering.

[15]  Chang-Ro Lee,et al.  Distinct Roles of Outer Membrane Porins in Antibiotic Resistance and Membrane Integrity in Escherichia coli , 2019, Front. Microbiol..

[16]  Chao-Jung Wu,et al.  Substantial Contribution of SmeDEF, SmeVWX, SmQnr, and Heat Shock Response to Fluoroquinolone Resistance in Clinical Isolates of Stenotrophomonas maltophilia , 2019, Front. Microbiol..

[17]  R. Gutiérrez-Ríos,et al.  Phenotypic and genomic analysis of Zymomonas mobilis ZM4 mutants with enhanced ethanol tolerance , 2019, Biotechnology reports.

[18]  M. Himmel,et al.  Prediction and characterization of promoters and ribosomal binding sites of Zymomonas mobilis in system biology era , 2019, Biotechnology for Biofuels.

[19]  Xiaobing Jiang,et al.  New technologies provide more metabolic engineering strategies for bioethanol production in Zymomonas mobilis , 2019, Applied Microbiology and Biotechnology.

[20]  Qi-li Zhu,et al.  Engineered Zymomonas mobilis tolerant to acetic acid and low pH via multiplex atmospheric and room temperature plasma mutagenesis , 2019, Biotechnology for Biofuels.

[21]  Sayandeep Gupta,et al.  The oligomeric plasticity of Hsp20 of Sulfolobus acidocaldarius protects environment-induced protein aggregation and membrane destabilization. , 2018, Biochimica et biophysica acta. Biomembranes.

[22]  Qiaoning He,et al.  Progress and perspective on lignocellulosic hydrolysate inhibitor tolerance improvement in Zymomonas mobilis , 2018, Bioresources and Bioprocessing.

[23]  Martin Eisenacher,et al.  The PRIDE database and related tools and resources in 2019: improving support for quantification data , 2018, Nucleic Acids Res..

[24]  Hui Liu,et al.  Modified TCA/acetone precipitation of plant proteins for proteomic analysis , 2018, bioRxiv.

[25]  Sean J McIlwain,et al.  Complete genome sequence and the expression pattern of plasmids of the model ethanologen Zymomonas mobilis ZM4 and its xylose-utilizing derivatives 8b and 2032 , 2018, Biotechnology for Biofuels.

[26]  K. Selim,et al.  Bioethanol a Microbial Biofuel Metabolite; New Insights of Yeasts Metabolic Engineering , 2018 .

[27]  Daehwan Kim Physico-Chemical Conversion of Lignocellulose: Inhibitor Effects and Detoxification Strategies: A Mini Review , 2018, Molecules.

[28]  R. Tommasi,et al.  Acinetobacter baumannii OmpA Is a Selective Antibiotic Permeant Porin. , 2017, ACS infectious diseases.

[29]  Ye Wang,et al.  JAK signaling regulates germline cyst breakdown and primordial follicle formation in mice , 2017, Biology Open.

[30]  M. G. Pinho,et al.  The ClpXP protease is dispensable for degradation of unfolded proteins in Staphylococcus aureus , 2017, Scientific Reports.

[31]  Mamoru Yamada,et al.  Thermotolerant genes essential for survival at a critical high temperature in thermotolerant ethanologenic Zymomonas mobilis TISTR 548 , 2017, Biotechnology for Biofuels.

[32]  Yu‐Fan Liu,et al.  Effect of acetic acid on ethanol production by Zymomonas mobilis mutant strains through continuous adaptation , 2017, BMC Biotechnology.

[33]  T. Gorr Hypometabolism as the ultimate defence in stress response: how the comparative approach helps understanding of medically relevant questions , 2017, Acta physiologica.

[34]  Syma Khalid,et al.  OmpA: A Flexible Clamp for Bacterial Cell Wall Attachment. , 2016, Structure.

[35]  D. Zheng,et al.  RNA‐seq transcriptome analysis of a Pseudomonas strain with diversified catalytic properties growth under different culture medium , 2016, MicrobiologyOpen.

[36]  C. V. Rao,et al.  High‐throughput sequencing reveals adaptation‐induced mutations in pentose‐fermenting strains of Zymomonas mobilis , 2015, Biotechnology and bioengineering.

[37]  A. Doucette,et al.  Comparison of sodium dodecyl sulfate depletion techniques for proteome analysis by mass spectrometry. , 2015, Journal of chromatography. A.

[38]  Jie Bao,et al.  Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment , 2015, Biotechnology for Biofuels.

[39]  F. Tan,et al.  Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors , 2015, Applied Microbiology and Biotechnology.

[40]  L. Milanesi,et al.  DnaK as Antibiotic Target: Hot Spot Residues Analysis for Differential Inhibition of the Bacterial Protein in Comparison with the Human HSP70 , 2015, PloS one.

[41]  Qi-li Zhu,et al.  Improving furfural tolerance of Zymomonas mobilis by rewiring a sigma factor RpoD protein , 2015, Applied Microbiology and Biotechnology.

[42]  Ming-xiong He,et al.  Transcriptional analysis of adaptation to high glucose concentrations in Zymomonas mobilis , 2015, Applied Microbiology and Biotechnology.

[43]  Anupama Ghosh Small heat shock proteins (HSP12, HSP20 and HSP30) play a role in Ustilago maydis pathogenesis. , 2014, FEMS microbiology letters.

[44]  Min Zhang,et al.  Insights into acetate toxicity in Zymomonas mobilis 8b using different substrates , 2014, Biotechnology for Biofuels.

[45]  Hanna S. Yuan,et al.  Structure and function of TatD exonuclease in DNA repair , 2014, Nucleic acids research.

[46]  T. Nissan,et al.  Interrelations between translation and general mRNA degradation in yeast , 2014, Wiley interdisciplinary reviews. RNA.

[47]  Brian H. Davison,et al.  Elucidation of Zymomonas mobilis physiology and stress responses by quantitative proteomics and transcriptomics , 2014, Front. Microbiol..

[48]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[49]  Wu Bo,et al.  Construction and Characterization of Restriction-Modification Deficient Mutants in Zymomonas mobilis ZM4: Construction and Characterization of Restriction-Modification Deficient Mutants in Zymomonas mobilis ZM4 , 2013 .

[50]  Min Zhang,et al.  Inhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic hydrolysates , 2013, Biotechnology for Biofuels.

[51]  B. Tjaden,et al.  Computational analysis of bacterial RNA-Seq data , 2013, Nucleic acids research.

[52]  L. Olsson,et al.  The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae , 2013, Biotechnology for Biofuels.

[53]  Qi-li Zhu,et al.  Transcriptome profiling of Zymomonas mobilis under ethanol stress , 2012, Biotechnology for Biofuels.

[54]  Qi-li Zhu,et al.  Transcriptome profiling of Zymomonas mobilis under furfural stress , 2012, Applied Microbiology and Biotechnology.

[55]  N. Jawali,et al.  Involvement of pnp in survival of UV radiation in Escherichia coli K-12. , 2012, Microbiology.

[56]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[57]  S. Gannavaram,et al.  Involvement of TatD nuclease during programmed cell death in the protozoan parasite Trypanosoma brucei , 2012, Molecular microbiology.

[58]  P. Rogers,et al.  Genome-wide transcriptomic analysis of a flocculent strain of Zymomonas mobilis , 2012, Applied Microbiology and Biotechnology.

[59]  C. Wyman,et al.  Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover , 2011, Biotechnology for biofuels.

[60]  Dale A Pelletier,et al.  Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae , 2010, Proceedings of the National Academy of Sciences.

[61]  Dale A Pelletier,et al.  The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors , 2010, BMC Microbiology.

[62]  Cole Trapnell,et al.  Role of Rodent Secondary Motor Cortex in Value-based Action Selection Nih Public Access Author Manuscript , 2006 .

[63]  Min Zhang,et al.  Development of a high-throughput method to evaluate the impact of inhibitory compounds from lignocellulosic hydrolysates on the growth of Zymomonas mobilis. , 2009, Journal of biotechnology.

[64]  D. G. Gibson,et al.  Enzymatic assembly of DNA molecules up to several hundred kilobases , 2009, Nature Methods.

[65]  M. Mann,et al.  Universal sample preparation method for proteome analysis , 2009, Nature Methods.

[66]  M. Winterhalter,et al.  The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria , 2008, Nature Reviews Microbiology.

[67]  Brad T. Sherman,et al.  Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists , 2008, Nucleic acids research.

[68]  Rolf Backofen,et al.  IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions , 2008, Bioinform..

[69]  David J. Baumler,et al.  Acid stress damage of DNA is prevented by Dps binding in Escherichia coli O157:H7 , 2008, BMC Microbiology.

[70]  S. Salzberg,et al.  Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake , 2007, Genome Biology.

[71]  Y. Hua,et al.  RadA: A protein involved in DNA damage repair processes of Deinococcus radiodurans R1 , 2006 .

[72]  Peter F. Stadler,et al.  Memory Efficient Folding Algorithms for Circular RNA Secondary Structures , 2006, German Conference on Bioinformatics.

[73]  J. Yoon,et al.  Search for Apoptotic Nucleases in Yeast , 2005, Journal of Biological Chemistry.

[74]  John W. Foster,et al.  Escherichia coli acid resistance: tales of an amateur acidophile , 2004, Nature Reviews Microbiology.

[75]  M. Wachi,et al.  Transcriptional Analysis of the ostA/imp Gene Involved in Organic Solvent Sensitivity in Escherichia coli , 2004, Bioscience, biotechnology, and biochemistry.

[76]  H. Nikaido Molecular Basis of Bacterial Outer Membrane Permeability Revisited , 2003, Microbiology and Molecular Biology Reviews.

[77]  R. Burne,et al.  Regulation and Physiological Significance of ClpC and ClpP in Streptococcus mutans , 2002, Journal of bacteriology.

[78]  M. Akagawa,et al.  Oxidative Deamination by Hydrogen Peroxide in the Presence of Metals , 2002, Free radical research.

[79]  Steven Salzberg,et al.  A probabilistic method for identifying start codons in bacterial genomes , 2001, Bioinform..

[80]  J. Hoeijmakers,et al.  XAB2, a Novel Tetratricopeptide Repeat Protein Involved in Transcription-coupled DNA Repair and Transcription* , 2000, The Journal of Biological Chemistry.

[81]  P. van Gelder,et al.  Structure and function of bacterial outer membrane proteins: barrels in a nutshell , 2000, Molecular microbiology.

[82]  S. Raina,et al.  A new heat‐shock gene, ppiD, encodes a peptidyl–prolyl isomerase required for folding of outer membrane proteins in Escherichia coli , 1998, The EMBO journal.

[83]  R. Nielsen,et al.  Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. , 1998, Genetics.

[84]  K. Crandall,et al.  Rhodopsin evolution in the dark , 1997, Nature.

[85]  W. Messier,et al.  Episodic adaptive evolution of primate lysozymes , 1997, Nature.

[86]  T. Katayama,et al.  Disruption of thehslUGene, Which Encodes an ATPase Subunit of the Eukaryotic 26S Proteasome Homolog inEscherichia coli,Suppresses the Temperature-SensitivednaA46Mutation , 1996 .

[87]  H. Akashi,et al.  Inferring weak selection from patterns of polymorphism and divergence at "silent" sites in Drosophila DNA. , 1995, Genetics.

[88]  H. Nakajima,et al.  Cloning of organic solvent tolerance gene ostA that determines n-hexane tolerance level in Escherichia coli , 1994, Applied and environmental microbiology.

[89]  E. Sugawara,et al.  Pore-forming activity of OmpA protein of Escherichia coli. , 1992, The Journal of biological chemistry.

[90]  D. B. Nickel Process development for platform chemical production from agricultural and forestry residues , 2021 .

[91]  Yun Yu,et al.  Recent advances and challenges of inter-disciplinary biomass valorization by integrating hydrothermal and biological techniques , 2021 .

[92]  Xuegong Zhang,et al.  DEGseq: an R package for identifying differentially expressed genes from RNA-seq data , 2010, Bioinform..

[93]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[94]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[95]  T. Katayama,et al.  Disruption of the hslU gene, which encodes an ATPase subunit of the eukaryotic 26S proteasome homolog in Escherichia coli, suppresses the temperature-sensitive dnaA46 mutation. , 1996, Biochemical and biophysical research communications.

[96]  R. Benz Structure and function of porins from gram-negative bacteria. , 1988, Annual review of microbiology.