Spooky Action at a Global Distance $-$ Resource-Rate Analysis of a Space-Based Entanglement-Distribution Network for the Quantum Internet

Recent experimental breakthroughs in satellite quantum communications have opened up the possibility of creating a global quantum internet using satellite links. This approach appears to be particularly viable in the near term, due to the lower attenuation of optical signals from satellite to ground, and due to the currently short coherence times of quantum memories. These drawbacks prevent ground-based entanglement distribution using atmospheric or optical-fiber links at high rates over long distances. In this work, we propose a global-scale quantum internet consisting of a constellation of orbiting satellites that provides a continuous on-demand entanglement distribution service to ground stations. The satellites can also function as untrusted nodes for the purpose of long-distance quantum-key distribution. We determine the optimal resource cost of such a network for obtaining continuous global coverage. We also analyze the performance of the network in terms of achievable entanglement-distribution rates and compare these rates to those that can be obtained using ground-based quantum-repeater networks.

[1]  Morten Kjaergaard,et al.  Superconducting Qubits: Current State of Play , 2019, Annual Review of Condensed Matter Physics.

[2]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[3]  D. Bruß,et al.  Satellite-based links for quantum key distribution: beam effects and weather dependence , 2019, New Journal of Physics.

[4]  Sumeet Khatri,et al.  Practical figures of merit and thresholds for entanglement distribution in quantum networks , 2019, Physical Review Research.

[5]  John Chiaverini,et al.  Trapped-ion quantum computing: Progress and challenges , 2019, Applied Physics Reviews.

[6]  Tom Vergoossen,et al.  Satellite constellations for trusted node QKD networks. , 2019, 1903.07845.

[7]  Jonathan Green,et al.  Photonic Engineering for CV-QKD Over Earth-Satellite Channels , 2019, ICC 2019 - 2019 IEEE International Conference on Communications (ICC).

[8]  Michele Mosca,et al.  Benchmarking the quantum cryptanalysis of symmetric, public-key and hash-based cryptographic schemes , 2019, 1902.02332.

[9]  N. Lutkenhaus,et al.  Eavesdropper's ability to attack a free-space quantum-key-distribution receiver in atmospheric turbulence , 2019, Physical Review A.

[10]  W. Vogel,et al.  Satellite-mediated quantum atmospheric links , 2019, Physical Review A.

[11]  Quntao Zhuang,et al.  Repeater-enhanced distributed quantum sensing based on continuous-variable multipartite entanglement , 2018, Physical Review A.

[12]  J. Borregaard,et al.  Quantum-assisted telescope arrays , 2018, Physical Review A.

[13]  M. Lukin,et al.  Optical Interferometry with Quantum Networks. , 2018, Physical review letters.

[14]  R. Ursin,et al.  Nanobob: a CubeSat mission concept for quantum communication experiments in an uplink configuration , 2017, International Conference on Space Optics.

[15]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[16]  Qiang Zhang,et al.  Large scale quantum key distribution: challenges and solutions [Invited]. , 2018, Optics express.

[17]  Xue Li,et al.  Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory , 2018, Nature Communications.

[18]  Jonathan Green,et al.  Quantum Communications via Satellite with Photon Subtraction , 2018, 2018 IEEE Globecom Workshops (GC Wkshps).

[19]  Paolo Villoresi,et al.  Towards quantum communication from global navigation satellite system , 2018, Quantum Science and Technology.

[20]  Audun Jøsang,et al.  The Impact of Quantum Computing on Present Cryptography , 2018, ArXiv.

[21]  Davide Castelvecchi,et al.  The quantum internet has arrived (and it hasn’t) , 2018, Nature.

[22]  Jian-Wei Pan,et al.  Satellite-Relayed Intercontinental Quantum Network. , 2018, Physical review letters.

[23]  Peter C. Humphreys,et al.  Deterministic delivery of remote entanglement on a quantum network , 2017, Nature.

[24]  Jeffrey H. Shapiro,et al.  Distributed Quantum Sensing Using Continuous-Variable Multipartite Entanglement , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[25]  Jonathan P. Dowling,et al.  Remote quantum clock synchronization without synchronized clocks , 2017, npj Quantum Information.

[26]  Sumeet Khatri,et al.  Robust quantum network architectures and topologies for entanglement distribution , 2017, 1709.07404.

[27]  Michele Mosca,et al.  Cybersecurity in an Era with Quantum Computers: Will We Be Ready? , 2017, IEEE Security & Privacy.

[28]  Christoph Simon,et al.  Towards a global quantum network , 2017, Nature Photonics.

[29]  D. Trotter,et al.  Metropolitan quantum key distribution with silicon photonics , 2017, 1708.00434.

[30]  Yang Li,et al.  Long-distance free-space quantum key distribution in daylight towards inter-satellite communication , 2017, Nature Photonics.

[31]  C. Marquardt,et al.  Free-space quantum links under diverse weather conditions , 2017, 1707.04932.

[32]  Alexander Ling,et al.  Progress in satellite quantum key distribution , 2017, 1707.03613.

[33]  Masahide Sasaki,et al.  Satellite-to-ground quantum-limited communication using a 50-kg-class microsatellite , 2017, Nature Photonics.

[34]  Jian-Wei Pan,et al.  Ground-to-satellite quantum teleportation , 2017, Nature.

[35]  Yongmei Huang,et al.  Satellite-to-ground quantum key distribution , 2017, Nature.

[36]  Roberto Morandotti,et al.  On-chip generation of high-dimensional entangled quantum states and their coherent control , 2017, Nature.

[37]  Dong He,et al.  Satellite-based entanglement distribution over 1200 kilometers , 2017, Science.

[38]  A. Serafini Quantum Continuous Variables: A Primer of Theoretical Methods , 2017 .

[39]  Paolo Villoresi,et al.  CubeSat quantum communications mission , 2017, EPJ Quantum Technology.

[40]  P. C. Humphreys,et al.  Entanglement distillation between solid-state quantum network nodes , 2017, Science.

[41]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.

[42]  Robert Bedington,et al.  Nanosatellite experiments to enable future space-based QKD missions , 2016 .

[43]  Norbert Lütkenhaus,et al.  Optimal architectures for long distance quantum communication , 2015, Scientific Reports.

[44]  Ankita Anirban,et al.  Monolithic semiconductor chips as a source for broadband wavelength-multiplexed polarization entangled photons. , 2015, Optics express.

[45]  C. Simon,et al.  Entanglement over global distances via quantum repeaters with satellite links , 2014, 1410.5384.

[46]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[47]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[48]  Dong Liu,et al.  Field and long-term demonstration of a wide area quantum key distribution network , 2014, Optics express.

[49]  Jieping Ye,et al.  A quantum network of clocks , 2013, Nature Physics.

[50]  R. Ricken,et al.  Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control. , 2013, Physical review letters.

[51]  Valentina Baccetti,et al.  Testing the effects of gravity and motion on quantum entanglement in space-based experiments , 2013, New Journal of Physics.

[52]  Patrick M. Hayden,et al.  Privacy from Accelerating Eavesdroppers: The Impact of Losses , 2014, Horizons of the Mind.

[53]  Alberto Tosi,et al.  Inherent polarization entanglement generated from a monolithic semiconductor chip , 2013, Scientific Reports.

[54]  Thomas Jennewein,et al.  The quantum space race , 2013 .

[55]  R. Laflamme,et al.  A comprehensive design and performance analysis of low Earth orbit satellite quantum communication , 2012, 1211.2733.

[56]  W. Munro,et al.  A monolithically integrated polarization entangled photon pair source on a silicon chip , 2012, Scientific Reports.

[57]  N. C. Menicucci,et al.  Fundamental quantum optics experiments conceivable with satellites—reaching relativistic distances and velocities , 2012, 1206.4949.

[58]  G. Rempe,et al.  An elementary quantum network of single atoms in optical cavities , 2012, Nature.

[59]  D. Gottesman,et al.  Longer-baseline telescopes using quantum repeaters. , 2011, Physical review letters.

[60]  N. Gisin,et al.  Long-term performance of the SwissQuantum quantum key distribution network in a field environment , 2011, 1203.4940.

[61]  A R Dixon,et al.  Field test of quantum key distribution in the Tokyo QKD Network. , 2011, Optics express.

[62]  Peter van Loock,et al.  Rate analysis for a hybrid quantum repeater , 2010, 1010.0106.

[63]  Kai Chen,et al.  Metropolitan all-pass and inter-city quantum communication network. , 2010, Optics express.

[64]  Francesco Petruccione,et al.  Realizing long-term quantum cryptography , 2010 .

[65]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[66]  Christoph Pacher,et al.  The SECOQC quantum key distribution network in Vienna , 2009, 2009 35th European Conference on Optical Communication.

[67]  P. Villoresi,et al.  Feasibility of satellite quantum key distribution , 2009, 0903.2160.

[68]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[69]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[70]  N. Gisin,et al.  Quantum repeaters with photon pair sources and multimode memories. , 2007, Physical review letters.

[71]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[72]  A. Zeilinger,et al.  Long-distance quantum communication with entangled photons using satellites , 2003, quant-ph/0305105.

[73]  Jonathan P. Dowling,et al.  Lorentz-invariant look at quantum clock-synchronization protocols based on distributed entanglement , 2000, quant-ph/0010097.

[74]  Colin P. Williams,et al.  Quantum clock synchronization based on shared prior entanglement , 2000, Physical review letters.

[75]  Samuel L. Braunstein,et al.  Criteria for continuous-variable quantum teleportation , 1999, quant-ph/9910030.

[76]  J. Cirac,et al.  Quantum repeaters based on entanglement purification , 1998, quant-ph/9808065.

[77]  J. Cirac,et al.  Distributed quantum computation over noisy channels , 1998, quant-ph/9803017.

[78]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[79]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[80]  L. Andrews,et al.  Laser Beam Propagation Through Random Media , 1998 .

[81]  Deutsch,et al.  Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels. , 1996, Physical review letters.

[82]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[83]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[84]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[85]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[86]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[87]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[88]  P. Barber Absorption and scattering of light by small particles , 1984 .

[89]  L. Casperson,et al.  Principles of lasers , 1983, IEEE Journal of Quantum Electronics.