(1, J)-set Problem in Graphs

A subset D ź V of a graph G = ( V , E ) is a ( 1 , j ) -set (Chellali etźal., 2013) if every vertex v ź V ź D is adjacent to at least 1 but not more than j vertices in D . The cardinality of a minimum ( 1 , j ) -set of G , denoted as γ ( 1 , j ) ( G ) , is called the ( 1 , j ) -domination number of G . In this paper, using probabilistic methods, we obtain an upper bound on γ ( 1 , j ) ( G ) for j ź O ( log Δ ) , where Δ is the maximum degree of the graph. The proof of this upper bound yields a randomized linear time algorithm. We show that the associated decision problem is NP-complete for choral graphs but, answering a question of Chellali etźal., provide a linear-time algorithm for trees for a fixed j . Apart from this, we design a polynomial time algorithm for finding γ ( 1 , j ) ( G ) for a fixed j in a split graph, and show that ( 1 , j ) -set problem is fixed parameter tractable in bounded genus graphs and bounded treewidth graphs.

[1]  Italo J. Dejter,et al.  Quasiperfect domination in triangular lattices , 2009, Discuss. Math. Graph Theory.

[2]  Sunil Arya,et al.  Space-time tradeoffs for approximate nearest neighbor searching , 2009, JACM.

[3]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[4]  Xiaojing Yang,et al.  [1, 2]-domination in Graphs , 2014, Discret. Appl. Math..

[5]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[6]  A. Floren,et al.  ' " ' " ' " . " ' " " " " " ' " ' " " " " " : ' " 1 , 2001 .

[7]  Richard C. T. Lee,et al.  The Weighted Perfect Domination Problem , 1990, Inf. Process. Lett..

[8]  Roman Glebov,et al.  On the Concentration of the Domination Number of the Random Graph , 2012, SIAM J. Discret. Math..

[9]  Gábor Tardos,et al.  A constructive proof of the general lovász local lemma , 2009, JACM.

[10]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[11]  Linda Annam Varghese,et al.  DOMINATION IN GRAPHS , 2016 .

[12]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[13]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[14]  Bruno Courcelle,et al.  The monadic second-order logic of graphs III: tree-decompositions, minor and complexity issues , 1992, RAIRO Theor. Informatics Appl..

[15]  Chung-Shou Liao,et al.  K-tuple Domination in Graphs , 2003, Inf. Process. Lett..

[16]  Yair Caro,et al.  Fair domination in graphs , 2012, Discret. Math..

[17]  Alan A. Bertossi,et al.  Dominating Sets for Split and Bipartite Graphs , 1984, Inf. Process. Lett..

[18]  S. Hedetniemi,et al.  Domination in graphs : advanced topics , 1998 .

[19]  Quentin F. Stout,et al.  PERFECT DOMINATING SETS , 1990 .

[20]  Frederick C. Harris,et al.  Nearly perfect sets in graphs , 1995, Discret. Math..

[21]  Teresa W. Haynes,et al.  [1, 2]-sets in Graphs , 2013, Discret. Appl. Math..

[22]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.