k-최근점 학습에 기반한 타동사-목적어 연어 사전의 최적화

영한 기계번역에서 영어 문장의 동사구를 한국어로 정확하게 번역하기 위해서는 일반적으로 타동사와 목적어의 연어 관계를 이용한다. 본 논문에서는 k-최근점(k-nearest neighbor) 학습을 연어 관계에 적용하여 동사 번역을 선택하는 알고리즘을 제시하였는데 k-최근점 학습을 위해서 워드넷에서의 의미거리를 정의하여 사용하였다. 그리고 실시간 번역 시스템에 사용될 사전을 구성하기 위하여, 말뭉치로부터 타동사-목적어 쌍을 추출하여 학습예제를 구축하고, 이 예제의 크기를 번역률과 연관시켜 최적화시키는 알고리즘을 제시한다. 본 논문에서는 위의 알고리즘들을 사용하여 동사 "build"의 번역률을 약 90%로 유지하면서 사전의 크기를 최적화하였다.