Review of current GPS methodologies for producing accurate time series and their error sources

Abstract The Global Positioning System (GPS) is an important tool to observe and model geodynamic processes such as plate tectonics and post-glacial rebound. In the last three decades, GPS has seen tremendous advances in the precision of the measurements, which allow researchers to study geophysical signals through a careful analysis of daily time series of GPS receiver coordinates. However, the GPS observations contain errors and the time series can be described as the sum of a real signal and noise. The signal itself can again be divided into station displacements due to geophysical causes and to disturbing factors. Examples of the latter are errors in the realization and stability of the reference frame and corrections due to ionospheric and tropospheric delays and GPS satellite orbit errors. There is an increasing demand on detecting millimeter to sub-millimeter level ground displacement signals in order to further understand regional scale geodetic phenomena hence requiring further improvements in the sensitivity of the GPS solutions. This paper provides a review spanning over 25 years of advances in processing strategies, error mitigation methods and noise modeling for the processing and analysis of GPS daily position time series. The processing of the observations is described step-by-step and mainly with three different strategies in order to explain the weaknesses and strengths of the existing methodologies. In particular, we focus on the choice of the stochastic model in the GPS time series, which directly affects the estimation of the functional model including, for example, tectonic rates, seasonal signals and co-seismic offsets. Moreover, the geodetic community continues to develop computational methods to fully automatize all phases from analysis of GPS time series. This idea is greatly motivated by the large number of GPS receivers installed around the world for diverse applications ranging from surveying small deformations of civil engineering structures (e.g., subsidence of the highway bridge) to the detection of particular geophysical signals.

[1]  Bofeng Li,et al.  Spatiotemporal filtering of regional GNSS network’s position time series with missing data using principle component analysis , 2013, Journal of Geodesy.

[2]  John Langbein,et al.  Noise in two‐color electronic distance meter measurements revisited , 2004 .

[3]  N. Perfetti,et al.  Detection of station coordinate discontinuities within the Italian GPS Fiducial Network , 2006 .

[4]  Bradford W. Parkinson,et al.  Global positioning system : theory and applications , 1996 .

[5]  M. Bouin,et al.  Correlated errors in GPS position time series: Implications for velocity estimates , 2011 .

[6]  Janusz Bogusz,et al.  On the Handling of Outliers in the GNSS Time Series by Means of the Noise and Probability Analysis , 2015 .

[7]  Jeanne Sauber,et al.  Crustal deformation associated with glacial fluctuations in the eastern Chugach Mountains, Alaska , 2000 .

[8]  Michael Bevis,et al.  Trajectory models and reference frames for crustal motion geodesy , 2014, Journal of Geodesy.

[9]  R. Devoti,et al.  Combination of loosely constrained solutions , 2003 .

[10]  Zhao Li,et al.  Comparative analysis of different environmental loading methods and their impacts on the GPS height time series , 2013, Journal of Geodesy.

[11]  Kegen Yu,et al.  Modeling Geodetic Processes with Levy $$\alpha $$α-Stable Distribution and FARIMA , 2015 .

[12]  Fallaw Sowell Maximum likelihood estimation of stationary univariate fractionally integrated time series models , 1992 .

[13]  Alireza Amiri-Simkooei,et al.  On the nature of GPS draconitic year periodic pattern in multivariate position time series , 2013 .

[14]  Y. Bock,et al.  Global Positioning System Network analysis with phase ambiguity resolution applied to crustal deformation studies in California , 1989 .

[15]  Geoffrey Blewitt,et al.  Advances in Global Positioning System Technology for Geodynamics Investigations: 1978–1992 , 2013 .

[16]  F. Grassa,et al.  Total (fumarolic + diffuse soil) CO2 output from Furnas volcano , 2015, Earth, Planets and Space.

[17]  Geoffrey Blewitt,et al.  Terrestrial reference frame NA12 for crustal deformation studies in North America , 2013 .

[18]  A. Amiri-Simkooei,et al.  Noise in multivariate GPS position time-series , 2009 .

[19]  J. Bogusz,et al.  Spatio-temporal filtering for determination ofcommon mode error in regional GNSS networks , 2015 .

[20]  Franck Picard,et al.  A statistical approach for array CGH data analysis , 2005, BMC Bioinformatics.

[21]  J. Hinderer,et al.  A search for the ratio between gravity variation and vertical displacement due to a surface load , 2007 .

[22]  Paul Vauterin,et al.  Tsoft: graphical and interactive software for the analysis of time series and Earth tides , 2005, Comput. Geosci..

[23]  Peter Steigenberger,et al.  Realization of the Terrestrial Reference System by a reprocessed global GPS network , 2008 .

[24]  B. Hofmann-Wellenhof,et al.  Global Positioning System , 1992 .

[25]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[26]  Bofeng Li,et al.  Weighted spatiotemporal filtering using principal component analysis for analyzing regional GNSS position time series , 2015, Acta Geodaetica et Geophysica.

[27]  John Langbein,et al.  Correlated errors in geodetic time series: Implications for time‐dependent deformation , 1997 .

[28]  Sergei N. Rodionov,et al.  Use of prewhitening in climate regime shift detection , 2006 .

[29]  J. Ray,et al.  The IGS contribution to ITRF2014 , 2016, Journal of Geodesy.

[30]  Patrick D. Nunn,et al.  Sea Level Change , 2013 .

[31]  Yuanxi Yang,et al.  Analysis of seasonal signals and long-term trends in the height time series of IGS sites in China , 2016, Science China Earth Sciences.

[32]  S. Rodionov A sequential algorithm for testing climate regime shifts , 2004 .

[33]  Jürgen Kusche,et al.  Separation of deterministic signals using independent component analysis (ICA) , 2012, Studia Geophysica et Geodaetica.

[34]  Peter J. Clarke,et al.  Ocean tide loading displacements in western Europe: 2. GPS‐observed anelastic dispersion in the asthenosphere , 2015 .

[35]  Thomas A. Herring,et al.  MATLAB Tools for viewing GPS velocities and time series , 2003 .

[36]  R. Fernandes,et al.  Deformation and Tectonics: Contribution of GPS Measurements to Plate Tectonics – Overview and Recent Developments , 2010 .

[37]  Yehuda Bock,et al.  Physical applications of GPS geodesy: a review , 2016, Reports on progress in physics. Physical Society.

[38]  T. Dixon,et al.  Noise in GPS coordinate time series , 1999 .

[39]  K. Tiampo,et al.  Analysis of GPS Measurements in Eastern Canada Using Principal Component Analysis , 2009, Pure and Applied Geophysics.

[40]  Qi Wang,et al.  Noise analysis of continuous GPS coordinate time series for CMONOC , 2012 .

[41]  Enrico Serpelloni,et al.  Vertical GPS ground motion rates in the Euro‐Mediterranean region: New evidence of velocity gradients at different spatial scales along the Nubia‐Eurasia plate boundary , 2013 .

[42]  J. Zumberge,et al.  Precise point positioning for the efficient and robust analysis of GPS data from large networks , 1997 .

[43]  Jinling Wang,et al.  New Outlier Separability Test and Its Application in GNSS Positioning , 2012 .

[44]  G. Casula Geodynamics of the Calabrian Arc area (Italy) inferred from a dense GNSS network observations , 2016 .

[45]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[46]  Geoffrey Blewitt,et al.  Effect of annual signals on geodetic velocity , 2002 .

[47]  J. Johansson,et al.  Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results , 2002 .

[48]  Robert W. King,et al.  Estimating regional deformation from a combination of space and terrestrial geodetic data , 1998 .

[49]  M. Bouin,et al.  Rates of sea‐level change over the past century in a geocentric reference frame , 2009 .

[50]  Comparison between GIPSY OASIS 6.0 and BERNESE 5.0 time series for long term GPS stations in Denmark , 2012 .

[51]  Chang Xu,et al.  Monte Carlo SSA to detect time-variable seasonal oscillations from GPS-derived site position time series , 2015 .

[52]  G. Blewitt,et al.  MIDAS robust trend estimator for accurate GPS station velocities without step detection , 2016, Journal of geophysical research. Solid earth.

[53]  Yingyan Cheng,et al.  An enhanced singular spectrum analysis method for constructing nonsecular model of GPS site movement , 2016 .

[54]  J. Johansson,et al.  Space-Geodetic Constraints on Glacial Isostatic Adjustment in Fennoscandia , 2001, Science.

[55]  Yunfeng Tian,et al.  Extracting the regional common‐mode component of GPS station position time series from dense continuous network , 2016 .

[56]  T. van Dam,et al.  PREDICTIONS OF CRUSTAL DEFORMATION AND OF GEOID AND SEA-LEVEL VARIABILITY CAUSED BY OCEANIC AND ATMOSPHERIC LOADING , 1997 .

[57]  Kenneth W. Hudnut,et al.  Southern California Permanent GPS Geodetic Array: Continuous measurements of regional crustal deformation between the 1992 Landers and 1994 Northridge earthquakes , 1997 .

[58]  P. Teunissen,et al.  Assessment of noise in GPS coordinate time series : Methodology and results , 2007 .

[59]  Yehuda Bock,et al.  Error analysis of continuous GPS position time series , 2004 .

[60]  U. Hugentobler,et al.  Estimation of velocity uncertainties from GPS time series: Examples from the analysis of the South African TrigNet network , 2011 .

[61]  J. Ray,et al.  Anomalous harmonics in the spectra of GPS position estimates , 2008 .

[62]  Paul Tregoning,et al.  Atmospheric effects and spurious signals in GPS analyses , 2009 .

[63]  Wujiao Dai,et al.  Spatiotemporal analysis of GPS time series in vertical direction using independent component analysis , 2015, Earth, Planets and Space.

[64]  John Langbein,et al.  Noise in GPS displacement measurements from Southern California and Southern Nevada , 2008 .

[65]  Yehuda Bock,et al.  Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis , 2006 .

[66]  Tieding Lu,et al.  Accuracy enhancement of GPS time series using principal component analysis and block spatial filtering , 2015 .

[67]  L. Longuevergne,et al.  Local hydrology, the Global Geodynamics Project and CHAMP/GRACE perspective: some case studies , 2004 .

[68]  Simon D. P. Williams,et al.  Non‐tidal ocean loading effects on geodetic GPS heights , 2011 .

[69]  Kaihua Ding,et al.  Evaluating seasonal loading models and their impact on global and regional reference frame alignment , 2014 .

[70]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[71]  Zuheir Altamimi,et al.  Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters , 2011, Journal of Geodesy.

[72]  Guillaume Ramillien,et al.  Detecting hydrologic deformation using GRACE and GPS , 2009 .

[73]  Matt A. King,et al.  Detecting offsets in GPS time series: First results from the detection of offsets in GPS experiment , 2013 .

[74]  Simon D. P. Williams,et al.  Offsets in Global Positioning System time series , 2003 .

[75]  Paul Segall,et al.  Network-based estimation of time-dependent noise in GPS position time series , 2015, Journal of Geodesy.

[76]  Alvaro Santamaría-Gómez,et al.  Geodetic secular velocity errors due to interannual surface loading deformation , 2015 .

[77]  Kegen Yu,et al.  Extracting Colored Noise Statistics in Time Series via Negentropy , 2013, IEEE Signal Processing Letters.

[78]  Z. Altamimi,et al.  ITRF2008: an improved solution of the international terrestrial reference frame , 2011 .

[79]  A. Amiri-Simkooei,et al.  Principal Component Analysis of Single-Beam Echo-Sounder Signal Features for Seafloor Classification , 2011, IEEE Journal of Oceanic Engineering.

[80]  Nico Sneeuw,et al.  Singular spectrum analysis for modeling seasonal signals from GPS time series , 2013 .

[81]  Geoffrey Blewitt,et al.  Crustal displacements due to continental water loading , 2001 .

[82]  Markus Rothacher,et al.  Processing Strategies for Regional GPS Networks , 1998 .

[83]  Weiping Jiang,et al.  Effects on noise properties of GPS time series caused by higher-order ionospheric corrections , 2014 .

[84]  Simon D. P. Williams,et al.  CATS: GPS coordinate time series analysis software , 2008 .

[85]  D. Agnew,et al.  The time-domain behavior of power-law noises. [of many geophysical phenomena] , 1992 .

[86]  Enrico Serpelloni,et al.  Blind source separation problem in GPS time series , 2016, Journal of Geodesy.

[87]  Janusz Bogusz,et al.  Error analysis for European IGS stations , 2015, Studia Geophysica et Geodaetica.

[88]  Felix Norman Teferle,et al.  An assessment of Bernese GPS software precise point positioning using IGS final products for global site velocities , 2007 .

[89]  A. Vitti Sigseg: a tool for the detection of position and velocity discontinuities in geodetic time-series , 2012, GPS Solutions.

[90]  Wu Chen,et al.  Characteristics of Daily Position Time Series from the Hong Kong Gps Fiducial Network , 2008 .

[91]  R. Dach,et al.  ITRF coordinates and plate velocities from repeated GPS campaigns in Antarctica – an analysis based on different individual solutions , 2001 .

[92]  G. Blewitt Carrier Phase Ambiguity Resolution for the Global Positioning System Applied to Geodetic Baselines up to 2000 km , 1989 .

[93]  Y. Bock,et al.  Anatomy of apparent seasonal variations from GPS‐derived site position time series , 2001 .

[94]  Christian Rocken,et al.  Near real‐time GPS sensing of atmospheric water vapor , 1997 .

[95]  M. Meindl,et al.  FODITS: A New Tool of the Bernese GPS Software to analyze Time Series , 2009 .

[96]  Maddalena Errico,et al.  Detecting discontinuities in GNSS coordinate time series with STARS: case study, the Bologna and Medicina GPS sites , 2014, Journal of Geodesy.

[97]  Joseph L. Awange,et al.  Independent patterns of water mass anomalies over Australia from satellite data and models , 2012 .

[98]  M. Abdel-Salam,et al.  Precise point positioning using un-differenced code and carrier phase observations , 2005 .

[99]  Shuanggen Jin,et al.  Evaluation of ocean tide loading effects on GPS-estimated precipitable water vapour in Turkey , 2016 .

[100]  Xavier Collilieux,et al.  Impact of loading effects on determination of the International Terrestrial Reference Frame , 2010 .

[101]  D. Alsdorf,et al.  Seasonal fluctuations in the mass of the Amazon River system and Earth's elastic response , 2005 .

[102]  Chung-Yen Kuo,et al.  Geodetic Observations and Global Reference Frame Contributions to Understanding Sea‐Level Rise and Variability , 2010 .

[103]  Marc Lavielle,et al.  The Multiple Change-Points Problem for the Spectral Distribution , 2000 .

[104]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[105]  Thomas A. Herring,et al.  A method for detecting transient signals in GPS position time-series: smoothing and principal component analysis , 2013 .

[106]  Kegen Yu,et al.  Extracting White Noise Statistics in GPS Coordinate Time Series , 2012, IEEE Geoscience and Remote Sensing Letters.

[107]  J. Wahr,et al.  Modeling environment loading effects: a review , 1998 .

[108]  Yehuda Bock,et al.  Southern California permanent GPS geodetic array: Error analysis of daily position estimates and site velocities , 1997 .

[109]  Xavier Collilieux,et al.  Topographically induced height errors in predicted atmospheric loading effects , 2010 .

[110]  Jean-Philippe Montillet,et al.  Critical Infrastructure Monitoring with Global Navigation Satellite Systems , 2016 .

[111]  S. Williams The effect of coloured noise on the uncertainties of rates estimated from geodetic time series , 2003 .

[112]  A. Wegrzyn,et al.  A short review about NOx storage/reduction catalysts based on metal oxides and hydrotalcite-type anionic clays , 2013 .

[113]  James L. Davis,et al.  GPS APPLICATIONS FOR GEODYNAMICS AND EARTHQUAKE STUDIES , 1997 .

[114]  Weiping Jiang,et al.  Effect of the span of Australian GPS coordinate time series in establishing an optimal noise model , 2015, Science China Earth Sciences.

[115]  Jean-Philippe Montillet,et al.  Estimation of offsets in GPS time-series and application to the detection of earthquake deformation in the far-field , 2015 .

[116]  G. Olivares,et al.  A Bayesian Monte Carlo Markov Chain Method for Parameter Estimation of Fractional Differenced Gaussian Processes , 2013, IEEE Transactions on Signal Processing.

[117]  Simon D. P. Williams,et al.  Fast error analysis of continuous GPS observations , 2008 .

[118]  Matt A. King,et al.  Long GPS coordinate time series: Multipath and geometry effects , 2009 .

[119]  A. Amiri-Simkooei,et al.  Coloured noise effects on deformation parameters of permanent GPS networks , 2016 .

[120]  Michael B. Heflin,et al.  Absolute far-field displacements from the 28 June 1992 Landers earthquake sequence , 1993, Nature.

[121]  H. Akaike A new look at the statistical model identification , 1974 .

[122]  Janusz Bogusz,et al.  On the significance of periodic signals in noise analysis of GPS station coordinates time series , 2016, GPS Solutions.

[123]  John Langbein,et al.  Estimating rate uncertainty with maximum likelihood: differences between power-law and flicker–random-walk models , 2012, Journal of Geodesy.

[124]  M. Tamisiea,et al.  On seasonal signals in geodetic time series , 2012 .

[125]  Szabolcs Rózsa,et al.  The Geodesist’s Handbook 2016 , 2016, Journal of Geodesy.

[126]  Simon D. P. Williams,et al.  Fast error analysis of continuous GNSS observations with missing data , 2013, Journal of Geodesy.

[127]  Yuanxi Yang,et al.  Spatiotemporal filtering for regional GPS network in China using independent component analysis , 2017, Journal of Geodesy.

[128]  Y. Bock,et al.  Single‐station automated detection of transient deformation in GPS time series with the relative strength index: A case study of Cascadian slow slip , 2016 .

[129]  Xavier Collilieux,et al.  Nontidal ocean loading: amplitudes and potential effects in GPS height time series , 2012, Journal of Geodesy.

[130]  Yan Xu,et al.  GPS: Theory, Algorithms and Applications , 2003 .

[131]  A. Klos UNCERTAINTIES OF GEODETIC VELOCITIES FROM PERMANENT GPS OBSERVATIONS: THE SUDETEN CASE STUDY , 2014 .

[132]  Jin Li,et al.  The Quasi-Biennial Vertical Oscillations at Global GPS Stations: Identification by Ensemble Empirical Mode Decomposition , 2015, Sensors.

[133]  H. Schuh,et al.  Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data , 2006 .

[134]  J. Ray,et al.  Impacts of GNSS position offsets on global frame stability , 2014 .

[135]  Yehuda Bock,et al.  Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake , 1997 .

[136]  Yunfeng Tian,et al.  iGPS: IDL tool package for GPS position time series analysis , 2011, GPS Solutions.