Formation and Maintenance of Functional Spines in the Absence of Presynaptic Glutamate Release

Summary Dendritic spines are the major transmitter reception compartments of glutamatergic synapses in most principal neurons of the mammalian brain and play a key role in the function of nerve cell circuits. The formation of functional spine synapses is thought to be critically dependent on presynaptic glutamatergic signaling. By analyzing CA1 pyramidal neurons in mutant hippocampal slice cultures that are essentially devoid of presynaptic transmitter release, we demonstrate that the formation and maintenance of dendrites and functional spines are independent of synaptic glutamate release.

[1]  S. Thompson Ephrins keep dendritic spines in shape , 2003, Nature Neuroscience.

[2]  E. Dere,et al.  Fast Cerebellar Reflex Circuitry Requires Synaptic Vesicle Priming by Munc13-3 , 2015, The Cerebellum.

[3]  K. Shen,et al.  Guidance molecules in synapse formation and plasticity. , 2010, Cold Spring Harbor perspectives in biology.

[4]  T. Südhof,et al.  The Morphological and Molecular Nature of Synaptic Vesicle Priming at Presynaptic Active Zones , 2014, Neuron.

[5]  N. Ip,et al.  Bidirectional signaling of ErbB and Eph receptors at synapses. , 2008, Neuron glia biology.

[6]  David A. Richards,et al.  Glutamate induces the rapid formation of spine head protrusions in hippocampal slice cultures , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[7]  D. Schmitz,et al.  Munc13-2 differentially affects hippocampal synaptic transmission and plasticity. , 2010, Cerebral cortex.

[8]  R. McKinney Excitatory amino acid involvement in dendritic spine formation, maintenance and remodelling , 2010, The Journal of physiology.

[9]  M. Verhage,et al.  Munc13 controls the location and efficiency of dense-core vesicle release in neurons , 2012, The Journal of cell biology.

[10]  Christian Rosenmund,et al.  Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[11]  B. Sabatini,et al.  Neuroligin-1–dependent competition regulates cortical synaptogenesis and synapse number , 2012, Nature Neuroscience.

[12]  Ann Marie Craig,et al.  Synapse composition and organization following chronic activity blockade in cultured hippocampal neurons , 2005, The Journal of comparative neurology.

[13]  T. Südhof,et al.  Synaptic assembly of the brain in the absence of neurotransmitter secretion. , 2000, Science.

[14]  E. Stamatakou,et al.  Postsynaptic Assembly: A Role for Wnt Signaling , 2013, Developmental neurobiology.

[15]  Douglas B. Ehlenberger,et al.  New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales , 2005, Neuroscience.

[16]  R. Nicoll,et al.  Distinct Roles for Ionotropic and Metabotropic Glutamate Receptors in the Maturation of Excitatory Synapses , 2000, The Journal of Neuroscience.

[17]  Rafael Yuste,et al.  Genesis of dendritic spines: insights from ultrastructural and imaging studies , 2004, Nature Reviews Neuroscience.

[18]  R. Fetter,et al.  Neuroligin Expressed in Nonneuronal Cells Triggers Presynaptic Development in Contacting Axons , 2000, Cell.

[19]  T. Soderling,et al.  Regulation of spine and synapse formation by activity-dependent intracellular signaling pathways , 2010, Current Opinion in Neurobiology.

[20]  Douglas B. Ehlenberger,et al.  Automated reconstruction of three-dimensional neuronal morphology from laser scanning microscopy images. , 2003, Methods.

[21]  Karen Zito,et al.  Preparation of gene gun bullets and biolistic transfection of neurons in slice culture. , 2008, Journal of visualized experiments : JoVE.

[22]  Rüdiger Klein,et al.  Bidirectional modulation of synaptic functions by Eph/ephrin signaling , 2009, Nature Neuroscience.

[23]  P. Scheiffele Cell-cell signaling during synapse formation in the CNS. , 2003, Annual review of neuroscience.

[24]  Nathalie L Rochefort,et al.  Dendritic spines: from structure to in vivo function , 2012, EMBO reports.

[25]  G. Turrigiano The Self-Tuning Neuron: Synaptic Scaling of Excitatory Synapses , 2008, Cell.

[26]  B. Sabatini,et al.  Glutamate induces de novo growth of functional spines in developing cortex , 2011, Nature.

[27]  D. Muller,et al.  A simple method for organotypic cultures of nervous tissue , 1991, Journal of Neuroscience Methods.

[28]  N. Brose Synaptogenic Proteins and Synaptic Organizers: “Many Hands Make Light Work” , 2009, Neuron.

[29]  M. Segal,et al.  Dendritic spine density and LTP induction in cultured hippocampal slices. , 1997, Journal of neurophysiology.

[30]  R. Tsien,et al.  Heterogeneous Reallocation of Presynaptic Efficacy in Recurrent Excitatory Circuits Adapting to Inactivity , 2011, Nature Neuroscience.

[31]  Lawrence C Katz,et al.  Neurotrophin Regulation of Cortical Dendritic Growth Requires Activity , 1996, Neuron.

[32]  Ryohei Yasuda,et al.  Biochemical Computation for Spine Structural Plasticity , 2015, Neuron.

[33]  J. Ronesi,et al.  Metabotropic Glutamate Receptors and Fragile X Mental Retardation Protein: Partners in Translational Regulation at the Synapse , 2008, Science Signaling.

[34]  N. Ip,et al.  Structural plasticity of dendritic spines: the underlying mechanisms and its dysregulation in brain disorders. , 2013, Biochimica et biophysica acta.

[35]  R. Huganir,et al.  Selective clustering of glutamate and gamma-aminobutyric acid receptors opposite terminals releasing the corresponding neurotransmitters. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[36]  R. Tsien,et al.  Synapse-Specific Adaptations to Inactivity in Hippocampal Circuits Achieve Homeostatic Gain Control while Dampening Network Reverberation , 2008, Neuron.

[37]  Ann Marie Craig,et al.  Neurexins Induce Differentiation of GABA and Glutamate Postsynaptic Specializations via Neuroligins , 2004, Cell.

[38]  T. Südhof Neuroligins and neurexins link synaptic function to cognitive disease , 2008, Nature.

[39]  J. Weiner,et al.  Cell Adhesion Molecules in Synapse Formation , 2004, The Journal of Neuroscience.

[40]  Karen Zito,et al.  Loss of PSD-95 Enrichment Is Not a Prerequisite for Spine Retraction , 2011, The Journal of Neuroscience.

[41]  Mark Ellisman,et al.  Assembly of Excitatory Synapses in the Absence of Glutamatergic Neurotransmission , 2017, Neuron.

[42]  E. Neher,et al.  Rates of diffusional exchange between small cells and a measuring patch pipette , 1988, Pflügers Archiv.

[43]  M. Sheng,et al.  Molecular mechanisms of dendritic spine morphogenesis , 2006, Current Opinion in Neurobiology.

[44]  F. Engert,et al.  Dendritic spine changes associated with hippocampal long-term synaptic plasticity , 1999, Nature.

[45]  Karen Zito,et al.  Synapse-specific and size-dependent mechanisms of spine structural plasticity accompanying synaptic weakening , 2012, Proceedings of the National Academy of Sciences.

[46]  Thomas C. Südhof,et al.  Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles , 1999, Nature.

[47]  M. Bennett,et al.  Stress and trauma: BDNF control of dendritic-spine formation and regression , 2014, Progress in Neurobiology.

[48]  Douglas B. Ehlenberger,et al.  Automated Three-Dimensional Detection and Shape Classification of Dendritic Spines from Fluorescence Microscopy Images , 2008, PloS one.

[49]  D. Muller,et al.  Dendritic spine formation and stabilization , 2009, Current Opinion in Neurobiology.

[50]  Karel Svoboda,et al.  NMDA Receptor Subunit-Dependent [Ca2+] Signaling in Individual Hippocampal Dendritic Spines , 2005, The Journal of Neuroscience.

[51]  Sholl Da Dendritic organization in the neurons of the visual and motor cortices of the cat. , 1953 .

[52]  L. Parajuli,et al.  Heterosynaptic structural plasticity on local dendritic segments of hippocampal CA1 neurons. , 2015, Cell reports.

[53]  R. Tsien,et al.  Adaptation to Synaptic Inactivity in Hippocampal Neurons , 2005, Neuron.

[54]  Mark Ellisman,et al.  The Cell-Autonomous Role of Excitatory Synaptic Transmission in the Regulation of Neuronal Structure and Function , 2013, Neuron.

[55]  L. Ballerini,et al.  Opposite changes in synaptic activity of organotypic rat spinal cord cultures after chronic block of AMPA/kainate or glycine and GABAA receptors , 2000, The Journal of physiology.

[56]  Douglas B. Ehlenberger,et al.  Rayburst sampling, an algorithm for automated three-dimensional shape analysis from laser scanning microscopy images , 2006, Nature Protocols.