Low-power data encoding/decoding for energy-efficient static random access memory design

This study presents a new energy-efficient design for static random access memory (SRAM) using a low-power input data encoding and output data decoding stages. A data bit reordering algorithm is applied to the input data to increase the number of 0s that are going to be written into the SRAM array. Using SRAM cells which are more energy-efficient in writing a ‘0’ than a ‘1’ benefits from this, resulting in a reduction in the total power and energy consumptions of the whole memory. The input data encoding is performed using a simple circuit, which is built of multiplexers and inverters. After the read operation, data will be returned back to its initial form using a low-power data decoding circuit. Simulation results in an industrial and a predictive CMOS technology show that the proposed design for SRAM reduces the energy consumption of read and write operations considerably for some standard test images as input data to the memory. For instance, in writing pixels of Lenna test image into this SRAM and reading them back, 15 and 20% savings are observed for the energy consumption of write and read operations, respectively, compared with the normal write and read operations in standard SRAMs.

[1]  Meng-Fan Chang,et al.  A 130 mV SRAM With Expanded Write and Read Margins for Subthreshold Applications , 2011, IEEE Journal of Solid-State Circuits.

[2]  Mohd Hasan,et al.  Robust TFET SRAM cell for ultra-low power IoT application , 2017, 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC).

[3]  Mariusz Duplaga,et al.  Hardware-Efficient Low-Power Image Processing System for Wireless Capsule Endoscopy , 2013, IEEE Journal of Biomedical and Health Informatics.

[4]  Sied Mehdi Fakhraie,et al.  A 256-kb 9T Near-Threshold SRAM With 1k Cells per Bitline and Enhanced Write and Read Operations , 2015, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[5]  Kaushik Roy,et al.  Fast and accurate estimation of SRAM read and hold failure probability using critical point sampling , 2010, IET Circuits Devices Syst..

[6]  Anantha Chandrakasan,et al.  Application-Specific SRAM Design Using Output Prediction to Reduce Bit-Line Switching Activity and Statistically Gated Sense Amplifiers for Up to 1.9$\times$ Lower Energy/Access , 2013, IEEE Journal of Solid-State Circuits.

[7]  Masahiko Yoshimoto,et al.  Novel Video Memory Reduces 45% of Bitline Power Using Majority Logic and Data-Bit Reordering , 2008, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[8]  Massoud Pedram,et al.  Internal write-back and read-before-write schemes to eliminate the disturbance to the half-selected cells in SRAMs , 2018, IET Circuits Devices Syst..

[9]  Kaushik Roy,et al.  A Priority-Based 6T/8T Hybrid SRAM Architecture for Aggressive Voltage Scaling in Video Applications , 2011, IEEE Transactions on Circuits and Systems for Video Technology.

[10]  Ramesh Vaddi,et al.  Comparison of nano-scale complementary metal-oxide semiconductor and 3T-4T double gate fin-shaped field-effect transistors for robust and energy-efficient subthreshold logic , 2010, IET Circuits Devices Syst..

[11]  Bo Zhai,et al.  A Variation-Tolerant Sub-200 mV 6-T Subthreshold SRAM , 2008, IEEE Journal of Solid-State Circuits.

[12]  Kaushik Roy,et al.  A 32 kb 10T Sub-Threshold SRAM Array With Bit-Interleaving and Differential Read Scheme in 90 nm CMOS , 2009, IEEE Journal of Solid-State Circuits.

[13]  Mohammad Sharifkhani,et al.  A Subthreshold Symmetric SRAM Cell With High Read Stability , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.

[14]  Ahmed M. Eltawil,et al.  AS8-static random access memory (SRAM): asymmetric SRAM architecture for soft error hardening enhancement , 2017, IET Circuits Devices Syst..

[15]  Sied Mehdi Fakhraie,et al.  An 8T Low-Voltage and Low-Leakage Half-Selection Disturb-Free SRAM Using Bulk-CMOS and FinFETs , 2014, IEEE Transactions on Electron Devices.

[16]  S. D. Pable,et al.  Ultra-low-power signaling challenges for subthreshold global interconnects , 2012, Integr..