Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions

[1]  Jiaqi Huang,et al.  Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes. , 2018, Angewandte Chemie.

[2]  K. C. Wasalathilake,et al.  Interaction between functionalized graphene and sulfur compounds in a lithium–sulfur battery – a density functional theory investigation , 2018, RSC advances.

[3]  Qiang Zhang,et al.  Review on High‐Loading and High‐Energy Lithium–Sulfur Batteries , 2017 .

[4]  Yongfang Li,et al.  Medium Bandgap Polymer Donor Based on Bi(trialkylsilylthienyl‐benzo[1,2‐b:4,5‐b′]‐difuran) for High Performance Nonfullerene Polymer Solar Cells , 2017 .

[5]  Kristin A. Persson,et al.  Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth , 2017, Nature Energy.

[6]  Chien‐Fan Chen,et al.  Probing Impedance and Microstructure Evolution in Lithium–Sulfur Battery Electrodes , 2017 .

[7]  Z. Wen,et al.  A rGO–CNT aerogel covalently bonded with a nitrogen-rich polymer as a polysulfide adsorptive cathode for high sulfur loading lithium sulfur batteries , 2017 .

[8]  Ji‐Guang Zhang,et al.  Stabilization of Li Metal Anode in DMSO‐Based Electrolytes via Optimization of Salt–Solvent Coordination for Li–O2 Batteries , 2017 .

[9]  Jun Liu,et al.  Elucidating the Solvation Structure and Dynamics of Lithium Polysulfides Resulting from Competitive Salt and Solvent Interactions , 2017 .

[10]  Qiang Zhang,et al.  Healing High-Loading Sulfur Electrodes with Unprecedented Long Cycling Life: Spatial Heterogeneity Control. , 2017, Journal of the American Chemical Society.

[11]  Yayuan Liu,et al.  Catalytic oxidation of Li2S on the surface of metal sulfides for Li−S batteries , 2017, Proceedings of the National Academy of Sciences.

[12]  Yet-Ming Chiang,et al.  Electrodeposition Kinetics in Li-S Batteries: Effects of Low Electrolyte/Sulfur Ratios and Deposition Surface Composition , 2017 .

[13]  Xiaofei Yang,et al.  Phase Inversion: A Universal Method to Create High‐Performance Porous Electrodes for Nanoparticle‐Based Energy Storage Devices , 2016 .

[14]  Linda F. Nazar,et al.  Advances in understanding mechanisms underpinning lithium–air batteries , 2016, Nature Energy.

[15]  Yi‐Chun Lu,et al.  Solvent-Dictated Lithium Sulfur Redox Reactions: An Operando UV-vis Spectroscopic Study. , 2016, The journal of physical chemistry letters.

[16]  Guangyuan Zheng,et al.  Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design , 2016, Nature Communications.

[17]  Dipan Kundu,et al.  A graphene-like metallic cathode host for long-life and high-loading lithium–sulfur batteries , 2016 .

[18]  Yang-Kook Sun,et al.  Mechanistic Role of Li⁺ Dissociation Level in Aprotic Li-O₂ Battery. , 2016, ACS applied materials & interfaces.

[19]  Yong Huang,et al.  Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium–sulfur batteries , 2016, Nature Communications.

[20]  Sean E. Doris,et al.  Three-Dimensional Growth of Li2S in Lithium-Sulfur Batteries Promoted by a Redox Mediator. , 2016, Nano letters.

[21]  K. Edström,et al.  The Li–S battery: an investigation of redox shuttle and self-discharge behaviour with LiNO3-containing electrolytes , 2016 .

[22]  Jung-Ki Park,et al.  A new insight on capacity fading of lithium-sulfur batteries: The effect of Li2S phase structure , 2015 .

[23]  Frank Y. Fan,et al.  Mechanism and Kinetics of Li2S Precipitation in Lithium–Sulfur Batteries , 2015, Advanced materials.

[24]  D. J. Lee,et al.  Reduction of charge and discharge polarization by cobalt nanoparticles-embedded carbon nanofibers for Li-O2 batteries. , 2015, ChemSusChem.

[25]  Jun Liu,et al.  On the Way Toward Understanding Solution Chemistry of Lithium Polysulfides for High Energy Li–S Redox Flow Batteries , 2015 .

[26]  L. Nazar,et al.  Radical or Not Radical: Revisiting Lithium–Sulfur Electrochemistry in Nonaqueous Electrolytes , 2015 .

[27]  Yi Cui,et al.  Understanding the Anchoring Effect of Two-Dimensional Layered Materials for Lithium-Sulfur Batteries. , 2015, Nano letters.

[28]  P. Mukherjee,et al.  Adsorption of insoluble polysulfides Li2S(x) (x = 1, 2) on Li2S surfaces. , 2015, Physical chemistry chemical physics : PCCP.

[29]  Colin M. Burke,et al.  Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li–O2 battery capacity , 2015, Proceedings of the National Academy of Sciences.

[30]  R. Tatara,et al.  Li(+) solvation in glyme-Li salt solvate ionic liquids. , 2015, Physical chemistry chemical physics : PCCP.

[31]  O. Borodin,et al.  High rate and stable cycling of lithium metal anode , 2015, Nature Communications.

[32]  Xiao Liang,et al.  A highly efficient polysulfide mediator for lithium–sulfur batteries , 2015, Nature Communications.

[33]  Venkatasubramanian Viswanathan,et al.  Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O₂ batteries. , 2015, Nature chemistry.

[34]  Sanjeev Mukerjee,et al.  A Study of the Influence of Lithium Salt Anions on Oxygen Reduction Reactions in Li-Air Batteries , 2015 .

[35]  Jun Lu,et al.  Insight into sulfur reactions in Li-S batteries. , 2014, ACS applied materials & interfaces.

[36]  Kishan Dholakia,et al.  The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. , 2014, Nature chemistry.

[37]  Hong‐Jie Peng,et al.  Catalytic self-limited assembly at hard templates: a mesoscale approach to graphene nanoshells for lithium-sulfur batteries. , 2014, ACS nano.

[38]  Jun Chen,et al.  Ultrasmall Li2S Nanoparticles Anchored in Graphene Nanosheets for High-Energy Lithium-Ion Batteries , 2014, Scientific Reports.

[39]  Yi Cui,et al.  Strong sulfur binding with conducting Magnéli-phase Ti(n)O2(n-1) nanomaterials for improving lithium-sulfur batteries. , 2014, Nano letters.

[40]  Wei Li,et al.  Rational design of a metal–organic framework host for sulfur storage in fast, long-cycle Li–S batteries , 2014 .

[41]  B. McCloskey,et al.  On the Origin and Implications of Li$_2$O$_2$ Toroid Formation in Nonaqueous Li-O$_2$ Batteries , 2014, 1406.3335.

[42]  Yi Cui,et al.  Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface , 2014, Nature Communications.

[43]  Ryuichi Arakawa,et al.  Electrochemical reactions of lithium-sulfur batteries: an analytical study using the organic conversion technique. , 2014, Physical chemistry chemical physics : PCCP.

[44]  Yuki Yamada,et al.  Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. , 2014, Journal of the American Chemical Society.

[45]  D. J. Lee,et al.  Chemical aspect of oxygen dissolved in a dimethyl sulfoxide-based electrolyte on lithium metal , 2014 .

[46]  Donghai Wang,et al.  Nitrogen‐Doped Mesoporous Carbon Promoted Chemical Adsorption of Sulfur and Fabrication of High‐Areal‐Capacity Sulfur Cathode with Exceptional Cycling Stability for Lithium‐Sulfur Batteries , 2014 .

[47]  Guangyuan Zheng,et al.  Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. , 2013, Nano letters.

[48]  Linda F. Nazar,et al.  Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge , 2013 .

[49]  Yet-Ming Chiang,et al.  Design of Battery Electrodes with Dual‐Scale Porosity to Minimize Tortuosity and Maximize Performance , 2013, Advanced materials.

[50]  Qiang Zhang,et al.  Entrapment of sulfur in hierarchical porous graphene for lithium-sulfur batteries with high rate per , 2013 .

[51]  W. Cho,et al.  Polysulfide dissolution control: the common ion effect. , 2013, Chemical communications.

[52]  Jasim Uddin,et al.  A rechargeable Li-O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. , 2013, Journal of the American Chemical Society.

[53]  Guangyuan Zheng,et al.  Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries , 2013, Nature Communications.

[54]  Yang-Kook Sun,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.

[55]  Yi Cui,et al.  High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. , 2012, Journal of the American Chemical Society.

[56]  L. Nazar,et al.  Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. , 2012, Angewandte Chemie.

[57]  Jun Liu,et al.  A Soft Approach to Encapsulate Sulfur: Polyaniline Nanotubes for Lithium‐Sulfur Batteries with Long Cycle Life , 2012, Advanced materials.

[58]  Sébastien Patoux,et al.  New insights into the limiting parameters of the Li/S rechargeable cell , 2012 .

[59]  Gérard Férey,et al.  Cathode composites for Li-S batteries via the use of oxygenated porous architectures. , 2011, Journal of the American Chemical Society.

[60]  H. Dai,et al.  Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. , 2011, Nano letters.

[61]  L. Archer,et al.  Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. , 2011, Angewandte Chemie.

[62]  Xiulei Ji,et al.  Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. , 2011, Nature Communications.

[63]  Jinghua Guo,et al.  Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. , 2011, Journal of the American Chemical Society.

[64]  Xueping Gao,et al.  Multi-electron reaction materials for high energy density batteries , 2010 .

[65]  Doron Aurbach,et al.  On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries , 2009 .

[66]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[67]  Xiangming He,et al.  Expansion and shrinkage of the sulfur composite electrode in rechargeable lithium batteries , 2009 .

[68]  M. Armand,et al.  Building better batteries , 2008, Nature.

[69]  M. Jafarian,et al.  Effect of potential on the early stage of nucleation and growth during aluminum electrocrystallization from molten salt (AlCl3–NaCl–KCl) , 2006 .

[70]  Yuriy V. Mikhaylik,et al.  Polysulfide Shuttle Study in the Li/S Battery System , 2004 .

[71]  Hee‐Tak Kim,et al.  Rechargeable Lithium Sulfur Battery I. Structural Change of Sulfur Cathode During Discharge and Charge , 2003 .

[72]  Hee‐Tak Kim,et al.  Rechargeable Lithium Sulfur Battery II. Rate Capability and Cycle Characteristics , 2003 .

[73]  Theodore L. Brown,et al.  The Common-Ion Effect , 2003 .

[74]  M. Armand,et al.  Anions of low Lewis basicity for ionic solid state electrolytes , 2002 .

[75]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[76]  W. Linert,et al.  Donor numbers of anions in solution: the use of solvatochromic Lewis acid–base indicators , 1993 .

[77]  K. Abraham,et al.  A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte , 1979 .

[78]  S. Brummer,et al.  Formation of lithium polysulfides in aprotic media , 1977 .

[79]  V. Gutmann Solvent effects on the reactivities of organometallic compounds , 1976 .

[80]  A. Bewick,et al.  Kinetics of the electrocrystallization of thin films of calomel , 1962 .