Full Rotational Control of Levitated Silicon Nanorods

We study a nanofabricated silicon rod levitated in an optical trap. By manipulating the polarization of the light we gain full control over the ro-translational dynamics of the rod. We are able to trap both its centre-of-mass and align it along the linear polarization of the laser field. The rod can be set into rotation at a tuned frequency by exploiting the radiation pressure exerted by elliptically polarized light. The rotational motion of the rod dynamically modifies the optical potential, which allows tuning of the rotational frequency over hundreds of Kilohertz. This ability to trap and control the motion and alignment of nanoparticles opens up the field of rotational optomechanics, rotational ground state cooling and the study of rotational thermodynamics in the underdamped regime.

[1]  B. E. Kane Levitated spinning graphene flakes in an electric quadrupole ion trap , 2010, 1006.3774.

[2]  Raphael Aronson,et al.  Theory and application of the Boltzmann equation , 1976 .

[3]  K. Hornberger,et al.  Testing the limits of quantum mechanical superpositions , 2014, Nature Physics.

[4]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.

[5]  T. S. Monteiro,et al.  Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles. , 2015, Physical review letters.

[6]  Daniel Andrén,et al.  Gold Nanorod Rotary Motors Driven by Resonant Light Scattering. , 2015, ACS nano.

[7]  M. Raizen,et al.  Measurement of the Instantaneous Velocity of a Brownian Particle , 2010, Science.

[8]  Christoph Dellago,et al.  Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. , 2014, Nature nanotechnology.

[9]  Lukas Novotny,et al.  Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. , 2012, Physical review letters.

[10]  Igor Protsenko,et al.  Sub-poissonian loading of single atoms in a microscopic dipole trap , 2001, Nature.

[11]  Q. Lin,et al.  A high-resolution microchip optomechanical accelerometer , 2012, Nature Photonics.

[12]  D. E. Changa,et al.  Cavity opto-mechanics using an optically levitated nanosphere , 2009 .

[13]  M. Bhattacharya,et al.  Optomechanics based on angular momentum exchange between light and matter , 2015, 1512.08989.

[14]  P. G. Gucciardi,et al.  Rotation detection in light-driven nanorotors. , 2009, ACS nano.

[15]  Stefan Kuhn,et al.  Cooling and manipulation of nanoparticles in high vacuum , 2016, NanoScience + Engineering.

[16]  A. Geraci,et al.  Zeptonewton force sensing with nanospheres in an optical lattice , 2016, 1603.02122.

[17]  P. Zemánek,et al.  Synchronization of colloidal rotors through angular optical binding , 2016 .

[18]  M. Bhattacharya Rotational cavity optomechanics , 2015, 1504.00920.

[19]  J. Anders,et al.  Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. , 2013, Nature nanotechnology.

[20]  Stefan Kuhn,et al.  Cavity-Assisted Manipulation of Freely Rotating Silicon Nanorods in High Vacuum , 2015, Nano letters.

[21]  Lajos Diósi,et al.  A universal master equation for the gravitational violation of quantum mechanics , 1987 .

[22]  Scattering of a particle with internal structure from a single slit , 2015 .

[23]  A. Eisner,et al.  On the stochastic nature of the motion of nonspherical aerosol particles: III. the rotational diffusion diadic and applications , 1981 .

[24]  Pearle,et al.  Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[25]  Optical forces due to spherical microresonators and their manifestation in optically induced orbital motion of nanoparticles , 2011 .

[26]  James Bateman,et al.  Near-field interferometry of a free-falling nanoparticle from a point-like source , 2013, Nature Communications.

[27]  Mikael Käll,et al.  Ultrafast spinning of gold nanoparticles in water using circularly polarized light. , 2013, Nano letters.

[28]  W. Phillips Nobel Lecture: Laser cooling and trapping of neutral atoms , 1998 .

[29]  Mikael Käll,et al.  Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. , 2010, Nano letters.

[30]  Amit Vainsencher,et al.  Nanomechanical coupling between microwave and optical photons , 2013, Nature Physics.

[31]  P. Meystre,et al.  Using a Laguerre-Gaussian beam to trap and cool the rotational motion of a mirror. , 2007, Physical review letters.

[32]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[33]  Stefan Kuhn,et al.  Cavity cooling of free silicon nanoparticles in high vacuum , 2013, Nature Communications.

[34]  B. Stickler,et al.  Rotranslational cavity cooling of dielectric rods and disks , 2016, 1605.05674.

[35]  J.J.G.M. van der Tol,et al.  Modeling and characterization of an electrooptic polarization controller on LiNbO/sub 3/ , 1993 .

[36]  Mark G. Raizen,et al.  Millikelvin cooling of an optically trapped microsphere in vacuum , 2011, 1101.1283.

[37]  Kishan Dholakia,et al.  Supplementary Figure S1: Numerical Psd Simulation. Example Numerical Simulation of The , 2022 .

[38]  Gavin W. Morley,et al.  Burning and graphitization of optically levitated nanodiamonds in vacuum , 2015, Scientific Reports.

[39]  M Pinard,et al.  High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. , 2006, Physical review letters.

[40]  F. Robicheaux,et al.  Decoherence of rotational degrees of freedom , 2016, 1605.03160.

[41]  Jonghoon Ahn,et al.  Torsional Optomechanics of a Levitated Nonspherical Nanoparticle. , 2016, Physical review letters.

[42]  Joshua A. Slater,et al.  Non-classical correlations between single photons and phonons from a mechanical oscillator , 2015, Nature.

[43]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[44]  P. Denti,et al.  Radiation torque and force on optically trapped linear nanostructures. , 2008, Physical review letters.

[45]  J. Ignacio Cirac,et al.  Toward quantum superposition of living organisms , 2009, 0909.1469.

[46]  R. Penrose On Gravity's role in Quantum State Reduction , 1996 .

[47]  T. S. Monteiro,et al.  Cavity cooling a single charged levitated nanosphere. , 2015, Physical review letters.

[48]  Grassi,et al.  Continuous-spontaneous-reduction model involving gravity. , 1989, Physical review. A, Atomic, molecular, and optical physics.

[49]  B. Stickler,et al.  Molecular rotations in matter-wave interferometry , 2015, 1506.06026.

[50]  H. Rubinsztein-Dunlop,et al.  Optical alignment and spinning of laser-trapped microscopic particles , 1998, Nature.

[51]  B. Stickler,et al.  Spatio-orientational decoherence of nanoparticles , 2016, 1607.04508.

[52]  Florian Blaser,et al.  Cavity cooling of an optically levitated submicron particle , 2013, Proceedings of the National Academy of Sciences.