Experimental Demonstration of Four-Dimensional Photonic Spatial Entanglement between Multi-core Optical Fibres

Fibre transport of multi-dimensional photonic quantum states promises high information capacity per photon without space restriction. This work experimentally demonstrates transmission of spatial ququarts through multi-core optical fibres and measurement of the entanglement between two fibres with quantum state analyzers, each composed of a spatial light modulator and a single-mode fibre. Quantum state tomography reconstructs the four-dimension entangled state that verifies the nonlocality through concurrences in two-dimensional subspaces, a lower bound of four-dimensional concurrence and a Bell-type CGLMP inequality.

[1]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[2]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[3]  S. Massar,et al.  Bell inequalities for arbitrarily high-dimensional systems. , 2001, Physical review letters.

[4]  W Tittel,et al.  Distribution of time-bin entangled qubits over 50 km of optical fiber. , 2004, Physical review letters.

[5]  Yanming Huo,et al.  Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier. , 2004, Optics express.

[6]  Leonardo Neves,et al.  Generation of entangled states of qudits using twin photons. , 2004, Physical review letters.

[7]  S P Walborn,et al.  Quantum key distribution with higher-order alphabets using spatially encoded qudits. , 2006, Physical review letters.

[8]  L. C. Kwek,et al.  Violating Bell inequalities maximally for two d-dimensional systems , 2006 .

[9]  Beating the channel capacity limit for linear photonic superdense coding , 2008 .

[10]  Marco Barbieri,et al.  Simplifying quantum logic using higher-dimensional Hilbert spaces , 2009 .

[11]  M. Tiersch,et al.  Detection and typicality of bound entangled states , 2009, 0902.4372.

[12]  A. Zeilinger,et al.  Discrete, tunable color-entanglement , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[13]  S. Walborn,et al.  Spatial correlations in parametric down-conversion , 2010, 1010.1236.

[14]  Ping Xu,et al.  Experimental realization of a controlled-NOT gate with four-photon six-qubit cluster states. , 2009, Physical review letters.

[15]  Adetunmise C. Dada,et al.  Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities , 2011, 1104.5087.

[16]  J. P. Woerdman,et al.  Fiber transport of spatially entangled photons. , 2010, Physical review letters.

[17]  Sang Min Lee,et al.  Measurement of the entanglement between photonic spatial modes in optical fibers. , 2012, Physical review letters.

[18]  Dong-Hoon Lee,et al.  Experimental realization of a four-photon seven-qubit graph state for one-way quantum computation. , 2012, Optics express.

[19]  James Schneeloch,et al.  Quantum mutual information capacity for high-dimensional entangled states. , 2011, Physical review letters.

[20]  Xingxing Xing,et al.  Multidimensional quantum information based on single-photon temporal wavepackets. , 2012, Optics express.

[21]  L. Nelson,et al.  Space-division multiplexing in optical fibres , 2013, Nature Photonics.

[22]  Enrico Santamato,et al.  Joining the quantum state of two photons into one , 2013, Nature Photonics.

[23]  M. Mohseni,et al.  Hyperentanglement-enabled direct characterization of quantum dynamics. , 2012, Physical review letters.

[24]  Jonathan Leach,et al.  Direct measurement of a 27-dimensional orbital-angular-momentum state vector , 2013, Nature Communications.

[25]  F. Huijskens,et al.  Ultra-high-density spatial division multiplexing with a few-mode multicore fibre , 2014, Nature Photonics.

[26]  A. Zeilinger,et al.  Generation and confirmation of a (100 × 100)-dimensional entangled quantum system , 2013, Proceedings of the National Academy of Sciences.

[27]  J. Knight,et al.  Highly birefringent 98-core fiber. , 2014, Optics letters.

[28]  Anton Zeilinger,et al.  Experimental access to higher-dimensional entangled quantum systems using integrated optics , 2015, 1502.06504.

[29]  Yoon-Ho Kim,et al.  Experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction , 2015, Scientific Reports.

[30]  Han Seb Moon,et al.  Multi-core fiber interferometer using spatial light modulators for measurement of the inter-core group index differences. , 2015, Optics express.

[31]  Yoann Zaouter,et al.  Coherent beam combining with an ultrafast multicore Yb-doped fiber amplifier. , 2015, Optics express.

[32]  O. Gühne,et al.  Quantifying Entanglement of Maximal Dimension in Bipartite Mixed States. , 2016, Physical review letters.

[33]  Vera Paz,et al.  High-dimensional decoy-state quantum key distribution over 0.3 km of multicore telecommunication optical fibers Distribución cuántica de clave con estados señuelo en altas dimensiones a través de una fibra óptica multinúcleo , 2016 .

[34]  Leif Katsuo Oxenløwe,et al.  High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits , 2016, npj Quantum Information.

[35]  Guang-Can Guo,et al.  On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom , 2016, Nature Communications.

[36]  G. Vallone,et al.  High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers , 2016, 1610.01682.