A conservative nonlocal convection–diffusion model and asymptotically compatible finite difference discretization

In this paper, we first propose a nonlocal convection–diffusion model, in which the convection term is constructed in a special upwind manner so that mass conservation and maximum principle are maintained in any space dimension. The well-posedness of the proposed nonlocal model and its convergence to the classical local convection–diffusion model are established. A quadrature-based finite difference discretization is then developed to numerically solve the nonlocal problem and it is shown to be consistent and unconditionally stable. We further demonstrate that the numerical scheme is asymptotically compatible, that is, the approximate solutions converge to the exact solution of the corresponding local problem when δ→0δ→0 and h→0h→0. Numerical experiments are also performed to complement the theoretical analysis.

[2]  Qiang Du,et al.  Nonlocal diffusion and peridynamic models with Neumann type constraints and their numerical approximations , 2017, Appl. Math. Comput..

[3]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[4]  Tsutomu Ikeda,et al.  Maximum Principle in Finite Element Models for Convection-diffusion Phenomena , 1983 .

[5]  R. Lehoucq,et al.  Fractional Diffusion on Bounded Domains , 2015 .

[6]  R. Plemmons M-matrix characterizations.I—nonsingular M-matrices , 1977 .

[7]  Qiang Du,et al.  Asymptotically Compatible Schemes and Applications to Robust Discretization of Nonlocal Models , 2014, SIAM J. Numer. Anal..

[8]  S. Silling,et al.  A meshfree method based on the peridynamic model of solid mechanics , 2005 .

[9]  Jean-Michel Morel,et al.  Image Denoising Methods. A New Nonlocal Principle , 2010, SIAM Rev..

[10]  Hong Wang,et al.  A fast and faithful collocation method with efficient matrix assembly for a two-dimensional nonlocal diffusion model , 2014 .

[11]  Youn Doh Ha,et al.  Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites , 2012 .

[12]  Li Tian,et al.  A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models , 2013, Math. Comput..

[13]  Michael L. Parks,et al.  Interface problems in nonlocal diffusion and sharp transitions between local and nonlocal domains , 2013 .

[14]  S. Silling,et al.  Deformation of a Peridynamic Bar , 2003 .

[15]  Thomas J. R. Hughes,et al.  A Petrov-Galerkin finite element method for convection-dominated flows: An accurate upwinding technique for satisfying the maximum principle☆ , 1985 .

[16]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[17]  V. Ervin,et al.  Variational solution of fractional advection dispersion equations on bounded domains in ℝd , 2007 .

[18]  P. Wesseling Principles of Computational Fluid Dynamics , 2000 .

[19]  D. Benson,et al.  Multidimensional advection and fractional dispersion. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  R. Lehoucq,et al.  Peridynamic Theory of Solid Mechanics , 2010 .

[21]  S. Silling,et al.  Peridynamic States and Constitutive Modeling , 2007 .

[22]  Qiang Du,et al.  A New Approach for a Nonlocal, Nonlinear Conservation Law , 2012, SIAM J. Appl. Math..

[23]  Qiang Du,et al.  Robust a posteriori stress analysis for quadrature collocation approximations of nonlocal models via nonlocal gradients , 2016 .

[24]  X. Chen,et al.  Continuous and discontinuous finite element methods for a peridynamics model of mechanics , 2011 .

[25]  Selda Oterkus,et al.  Peridynamic thermal diffusion , 2014, J. Comput. Phys..

[26]  Q. Du,et al.  MATHEMATICAL ANALYSIS FOR THE PERIDYNAMIC NONLOCAL CONTINUUM THEORY , 2011 .

[27]  Richard B. Lehoucq,et al.  A Nonlocal Vector Calculus with Application to Nonlocal Boundary Value Problems , 2010, Multiscale Model. Simul..

[28]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[29]  Li Tian,et al.  A Convergent Adaptive Finite Element Algorithm for Nonlocal Diffusion and Peridynamic Models , 2013, SIAM J. Numer. Anal..

[30]  Liviu I. Ignat,et al.  A nonlocal convection–diffusion equation , 2007 .

[31]  Fahad Almutairi,et al.  Nonlocal vector calculus , 2018 .

[32]  J. Morel,et al.  On image denoising methods , 2004 .

[33]  Guy Gilboa,et al.  Nonlocal Linear Image Regularization and Supervised Segmentation , 2007, Multiscale Model. Simul..

[34]  N. SIAMJ.,et al.  ANALYSIS AND COMPARISON OF DIFFERENT APPROXIMATIONS TO NONLOCAL DIFFUSION AND LINEAR PERIDYNAMIC EQUATIONS∗ , 2013 .

[35]  DU Qiang,et al.  Numerical Solution of a Scalar One-Dimensional Monotonicity-Preserving Nonlocal Nonlinear Conservation Law , 2017 .

[36]  Robert Lipton,et al.  Cohesive Dynamics and Brittle Fracture , 2014, 1411.4609.

[37]  J A Sherratt,et al.  A Nonlocal Model for Contact Attraction and Repulsion in Heterogeneous Cell Populations , 2015, Bulletin of Mathematical Biology.

[38]  Qiang Du,et al.  Nonlocal convection-diffusionvolume-constrained problems and jump processes , 2014 .

[39]  Stewart Andrew Silling,et al.  Linearized Theory of Peridynamic States , 2010 .

[40]  Qiang Du,et al.  Finite range jump processes and volume–constrained diffusion problems , 2014 .

[41]  Olaf Weckner,et al.  The effect of long-range forces on the dynamics of a bar , 2005 .

[42]  Florin Bobaru,et al.  A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities , 2012, J. Comput. Phys..

[43]  Daniel E. Geer,et al.  Convergence , 2021, IEEE Secur. Priv..

[44]  Qiang Du,et al.  Mathematical Models and Methods in Applied Sciences c ○ World Scientific Publishing Company Sandia National Labs SAND 2010-8353J A NONLOCAL VECTOR CALCULUS, NONLOCAL VOLUME-CONSTRAINED PROBLEMS, AND NONLOCAL BALANCE LAWS , 2022 .

[45]  Kun Zhou,et al.  Mathematical and Numerical Analysis of Linear Peridynamic Models with Nonlocal Boundary Conditions , 2010, SIAM J. Numer. Anal..

[46]  Qiang Du,et al.  Analysis and Comparison of Different Approximations to Nonlocal Diffusion and Linear Peridynamic Equations , 2013, SIAM J. Numer. Anal..

[47]  J. Carrillo,et al.  Non-local kinetic and macroscopic models for self-organised animal aggregations , 2014, 1407.2099.

[48]  Qiang Du,et al.  Nonlocal convection–diffusion problems and finite element approximations , 2015 .

[49]  S. Silling,et al.  Peridynamics via finite element analysis , 2007 .

[50]  S. Silling,et al.  Convergence, adaptive refinement, and scaling in 1D peridynamics , 2009 .