Post-reconstruction deconvolution of PET images by total generalized variation regularization

Improving the quality of positron emission tomography (PET) images, affected by low resolution and high level of noise, is a challenging task in nuclear medicine and radiotherapy. This work proposes a restoration method, achieved after tomographic reconstruction of the images and targeting clinical situations where raw data are often not accessible. Based on inverse problem methods, our contribution introduces the recently developed total generalized variation (TGV) norm to regularize PET image deconvolution. Moreover, we stabilize this procedure with additional image constraints such as positivity and photometry invariance. A criterion for updating and adjusting automatically the regularization parameter in case of Poisson noise is also presented. Experiments are conducted on both synthetic data and real patient images.

[1]  T. Pock,et al.  Second order total generalized variation (TGV) for MRI , 2011, Magnetic resonance in medicine.

[2]  Paul Kinahan,et al.  Image reconstruction for PET/CT scanners: past achievements and future challenges. , 2010, Imaging in medicine.

[3]  Anne Bol,et al.  A gradient-based method for segmenting FDG-PET images: methodology and validation , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[4]  James A. Scott,et al.  Positron Emission Tomography: Basic Science and Clinical Practice , 2004 .

[5]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[6]  Laure Blanc-Féraud,et al.  Regularizing parameter estimation for Poisson noisy image restoration , 2011, VALUETOOLS.

[7]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[8]  F. J. Anscombe,et al.  THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA , 1948 .

[9]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[10]  Mário A. T. Figueiredo,et al.  Deconvolving Images With Unknown Boundaries Using the Alternating Direction Method of Multipliers , 2012, IEEE Transactions on Image Processing.

[11]  David W. Townsend,et al.  Positon emission tomography: basic science and clinical practice , 2008 .

[12]  J. Lee,et al.  Segmentation of positron emission tomography images: some recommendations for target delineation in radiation oncology. , 2010, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[13]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[14]  S. Anthoine,et al.  Some proximal methods for CBCT and PET tomography , 2011, Optical Engineering + Applications.

[15]  Laurent Jacques,et al.  Compressive Optical Deflectometric Tomography: A Constrained Total-Variation Minimization Approach , 2012, ArXiv.

[16]  Pascal Getreuer,et al.  Total Variation Deconvolution using Split Bregman , 2012, Image Process. Line.

[17]  Fritz Gesztesy,et al.  SPECTRAL ESTIMATION AND INVERSE INITIAL BOUNDARY VALUE PROBLEMS , 2010 .

[18]  Jean-François Daisne,et al.  Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. , 2004, Radiology.

[19]  Ieee Staff 2017 25th European Signal Processing Conference (EUSIPCO) , 2017 .

[20]  Jean-Luc Starck,et al.  Deconvolution under Poisson noise using exact data fidelity and synthesis or analysis sparsity priors , 2011, 1103.2213.