Post-reconstruction deconvolution of PET images by total generalized variation regularization
暂无分享,去创建一个
Laurent Jacques | Benoit M. Macq | John A. Lee | Stéphanie Guérit | L. Jacques | B. Macq | J. Lee | S. Guérit
[1] T. Pock,et al. Second order total generalized variation (TGV) for MRI , 2011, Magnetic resonance in medicine.
[2] Paul Kinahan,et al. Image reconstruction for PET/CT scanners: past achievements and future challenges. , 2010, Imaging in medicine.
[3] Anne Bol,et al. A gradient-based method for segmenting FDG-PET images: methodology and validation , 2007, European Journal of Nuclear Medicine and Molecular Imaging.
[4] James A. Scott,et al. Positron Emission Tomography: Basic Science and Clinical Practice , 2004 .
[5] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[6] Laure Blanc-Féraud,et al. Regularizing parameter estimation for Poisson noisy image restoration , 2011, VALUETOOLS.
[7] Karl Kunisch,et al. Total Generalized Variation , 2010, SIAM J. Imaging Sci..
[8] F. J. Anscombe,et al. THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA , 1948 .
[9] Antonin Chambolle,et al. A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.
[10] Mário A. T. Figueiredo,et al. Deconvolving Images With Unknown Boundaries Using the Alternating Direction Method of Multipliers , 2012, IEEE Transactions on Image Processing.
[11] David W. Townsend,et al. Positon emission tomography: basic science and clinical practice , 2008 .
[12] J. Lee,et al. Segmentation of positron emission tomography images: some recommendations for target delineation in radiation oncology. , 2010, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.
[13] Stephen P. Boyd,et al. Proximal Algorithms , 2013, Found. Trends Optim..
[14] S. Anthoine,et al. Some proximal methods for CBCT and PET tomography , 2011, Optical Engineering + Applications.
[15] Laurent Jacques,et al. Compressive Optical Deflectometric Tomography: A Constrained Total-Variation Minimization Approach , 2012, ArXiv.
[16] Pascal Getreuer,et al. Total Variation Deconvolution using Split Bregman , 2012, Image Process. Line.
[17] Fritz Gesztesy,et al. SPECTRAL ESTIMATION AND INVERSE INITIAL BOUNDARY VALUE PROBLEMS , 2010 .
[18] Jean-François Daisne,et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. , 2004, Radiology.
[19] Ieee Staff. 2017 25th European Signal Processing Conference (EUSIPCO) , 2017 .
[20] Jean-Luc Starck,et al. Deconvolution under Poisson noise using exact data fidelity and synthesis or analysis sparsity priors , 2011, 1103.2213.