Frobenius-Rieffel norms on finite-dimensional C*-algebras

In 2014, Rieffel introduced norms on certain unital C*-algebras built from conditional expectations onto unital C*-subalgebras. We begin by showing that these norms generalize the Frobenius norm, and we provide explicit formulas for certain conditional expectations onto unital C*-subalgebras of finite-dimensional C*-algebras. This allows us compare these norms to the operator norm by finding explicit equivalence constants. In particular, we find equivalence constants for the standard finite-dimensional C*-subalgebras of the Effros-Shen algebras that vary continuously with respect to their given irrational parameters.

[1]  JENS KAAD,et al.  Dynamics of compact quantum metric spaces , 2019, Ergodic Theory and Dynamical Systems.

[2]  Konrad Aguilar,et al.  Quantum metrics from traces on full matrix algebras , 2019, Involve, a Journal of Mathematics.

[3]  F. Latrémolière The covariant Gromov–Hausdorff propinquity , 2018, 1805.11229.

[4]  M. Junge,et al.  Harmonic Analysis Approach to Gromov–Hausdorff Convergence for Noncommutative Tori , 2017, Communications in Mathematical Physics.

[5]  M. Junge,et al.  Harmonic Analysis Approach to Gromov–Hausdorff Convergence for Noncommutative Tori , 2016, 1612.02735.

[6]  F. Latrémolière,et al.  Quantum Ultrametrics on AF Algebras and The Gromov-Hausdorff Propinquity , 2015, 1511.07114.

[7]  F. Latrémolière Convergence of Fuzzy Tori and Quantum Tori for the Quantum Gromov-Hausdorff Propinquity: An Explicit Approach , 2013, 1312.0069.

[8]  Frédéric Latrémolière The Quantum Gromov-Hausdorff Propinquity , 2013, 1302.4058.

[9]  Hanfeng Li,et al.  On Gromov-Hausdorff convergence for operator metric spaces , 2004, math/0411157.

[10]  Hanfeng Li Order-unit quantum Gromov–Hausdorff distance , 2003, math/0312001.

[11]  M. Rieffel Gromov-Hausdorff Distance for Quantum Metric Spaces/Matrix Algebras Converge to the Sphere for Quantum Gromov-Hausdorff Distance , 2001, math/0108005.

[12]  M. Rieffel Gromov-Hausdorff Distance for Quantum Metric Spaces , 2000, math/0011063.

[13]  Rajendra Bhatia,et al.  Pinching, Trimming, Truncating, and Averaging of Matrices , 2000, Am. Math. Mon..

[14]  Marc A. Rieffel,et al.  Metrics on states from actions of compact groups , 1998, Documenta Mathematica.

[15]  S. Wassermann,et al.  C*‐ALGEBRAS BY EXAMPLE (Fields Institute Monographs 6) , 1998 .

[16]  G. Murphy C*-Algebras and Operator Theory , 1990 .

[17]  A. Connes Compact metric spaces, Fredholm modules, and hyperfiniteness , 1989, Ergodic Theory and Dynamical Systems.

[18]  G. Pedersen C-Algebras and Their Automorphism Groups , 1979 .

[19]  Marc A. Rieffel,et al.  Induced representations of C∗-algebras , 1974 .

[20]  Karin Rothschild,et al.  A Course In Functional Analysis , 2016 .

[21]  D. R. Heath-Brown,et al.  An Introduction to the Theory of Numbers, Sixth Edition , 2008 .

[22]  WU WEI,et al.  Quantized Gromov-hausdorff Distance , 2005 .

[23]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[24]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.