Frobenius-Rieffel norms on finite-dimensional C*-algebras
暂无分享,去创建一个
[1] JENS KAAD,et al. Dynamics of compact quantum metric spaces , 2019, Ergodic Theory and Dynamical Systems.
[2] Konrad Aguilar,et al. Quantum metrics from traces on full matrix algebras , 2019, Involve, a Journal of Mathematics.
[3] F. Latrémolière. The covariant Gromov–Hausdorff propinquity , 2018, 1805.11229.
[4] M. Junge,et al. Harmonic Analysis Approach to Gromov–Hausdorff Convergence for Noncommutative Tori , 2017, Communications in Mathematical Physics.
[5] M. Junge,et al. Harmonic Analysis Approach to Gromov–Hausdorff Convergence for Noncommutative Tori , 2016, 1612.02735.
[6] F. Latrémolière,et al. Quantum Ultrametrics on AF Algebras and The Gromov-Hausdorff Propinquity , 2015, 1511.07114.
[7] F. Latrémolière. Convergence of Fuzzy Tori and Quantum Tori for the Quantum Gromov-Hausdorff Propinquity: An Explicit Approach , 2013, 1312.0069.
[8] Frédéric Latrémolière. The Quantum Gromov-Hausdorff Propinquity , 2013, 1302.4058.
[9] Hanfeng Li,et al. On Gromov-Hausdorff convergence for operator metric spaces , 2004, math/0411157.
[10] Hanfeng Li. Order-unit quantum Gromov–Hausdorff distance , 2003, math/0312001.
[11] M. Rieffel. Gromov-Hausdorff Distance for Quantum Metric Spaces/Matrix Algebras Converge to the Sphere for Quantum Gromov-Hausdorff Distance , 2001, math/0108005.
[12] M. Rieffel. Gromov-Hausdorff Distance for Quantum Metric Spaces , 2000, math/0011063.
[13] Rajendra Bhatia,et al. Pinching, Trimming, Truncating, and Averaging of Matrices , 2000, Am. Math. Mon..
[14] Marc A. Rieffel,et al. Metrics on states from actions of compact groups , 1998, Documenta Mathematica.
[15] S. Wassermann,et al. C*‐ALGEBRAS BY EXAMPLE (Fields Institute Monographs 6) , 1998 .
[16] G. Murphy. C*-Algebras and Operator Theory , 1990 .
[17] A. Connes. Compact metric spaces, Fredholm modules, and hyperfiniteness , 1989, Ergodic Theory and Dynamical Systems.
[18] G. Pedersen. C-Algebras and Their Automorphism Groups , 1979 .
[19] Marc A. Rieffel,et al. Induced representations of C∗-algebras , 1974 .
[20] Karin Rothschild,et al. A Course In Functional Analysis , 2016 .
[21] D. R. Heath-Brown,et al. An Introduction to the Theory of Numbers, Sixth Edition , 2008 .
[22] WU WEI,et al. Quantized Gromov-hausdorff Distance , 2005 .
[23] Andrew Lesniewski,et al. Noncommutative Geometry , 1997 .
[24] E. T.. An Introduction to the Theory of Numbers , 1946, Nature.