Birnbaum–Saunders power-exponential kernel density estimation and Bayes local bandwidth selection for nonnegative heavy tailed data

In this paper, we study the performance of the Birnbaum–Saunders-power-exponential (BS-PE) kernel and Bayesian local bandwidth selection in the context of kernel density estimation for nonnegative heavy tailed data. Our approach considers the BS-PE kernel estimator and treats locally the bandwidth h as a parameter with prior distribution. The posterior density of h at each point x (point where the density is estimated) is derived in closed form, and the Bayesian bandwidth selector is obtained by using popular loss functions. The performance evaluation of this new procedure is carried out by a simulation study and real data in web-traffic. The proposed method is very quick and very competitive in comparison with the existing global methods, namely biased cross-validation and unbiased cross-validation.

[1]  Rob J. Hyndman,et al.  A Bayesian approach to bandwidth selection for multivariate kernel density estimation , 2006, Comput. Stat. Data Anal..

[2]  Xiaodong Jin,et al.  Birnbaum-Saunders and Lognormal Kernel Estimators for Modelling Durations in High Frequency Financial Data , 2003 .

[3]  R. Calabria,et al.  Point estimation under asymmetric loss functions for left-truncated exponential samples , 1996 .

[4]  K. B. Kulasekera,et al.  Bayes bandwidth selection in kernel density estimation with censored data , 2006 .

[5]  Helton Saulo,et al.  Generalized Birnbaum-Saunders kernel density estimators and an analysis of financial data , 2013, Comput. Stat. Data Anal..

[6]  Nikolaos Limnios,et al.  Applied Nonparametric Statistics in Reliability , 2011 .

[7]  Ashis K. Gangopadhyay,et al.  Bayesian approach to the choice of smoothing parameter in kernel density estimation , 2002 .

[8]  Udo R. Krieger,et al.  The estimation of heavy-tailed probability density functions, their mixtures and quantiles , 2002, Comput. Networks.

[9]  Song-xi Chen,et al.  Probability Density Function Estimation Using Gamma Kernels , 2000 .

[10]  Olivier Scaillet,et al.  Density estimation using inverse and reciprocal inverse Gaussian kernels , 2004 .

[12]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[13]  J. Simonoff Smoothing Methods in Statistics , 1998 .

[14]  Binomial kernel and Bayes local bandwidth in discrete function estimation , 2012 .

[15]  S. Adjabi,et al.  Adaptive Bayesian bandwidth selection in asymmetric kernel density estimation for nonnegative heavy-tailed data , 2015 .

[16]  G. S. Atuncar,et al.  A Bayesian method to estimate the optimal bandwidth for multivariate kernel estimator , 2011 .

[17]  Y. Kakizawa,et al.  Re-formulation of inverse Gaussian, reciprocal inverse Gaussian, and Birnbaum–Saunders kernel estimators , 2014 .

[18]  Flávio Augusto Ziegelmann,et al.  A nonparametric method for estimating asymmetric densities based on skewed Birnbaum–Saunders distributions applied to environmental data , 2013, Stochastic Environmental Research and Risk Assessment.

[19]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[20]  José A. Díaz-García,et al.  A new family of life distributions based on the elliptically contoured distributions , 2005 .

[21]  C. C. Kokonendji,et al.  Discrete associated kernels method and extensions , 2011 .

[22]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[23]  Smail Adjabi,et al.  Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation , 2014, Comput. Stat. Data Anal..

[24]  Guido Sanguinetti,et al.  Approximate inference of the bandwidth in multivariate kernel density estimation , 2011, Comput. Stat. Data Anal..

[25]  Song-xi Chen,et al.  Beta kernel estimators for density functions , 1999 .

[26]  Z. Birnbaum,et al.  A new family of life distributions , 1969 .

[27]  Mark J. Brewer,et al.  A Bayesian model for local smoothing in kernel density estimation , 2000, Stat. Comput..

[28]  Shuowen Hu,et al.  Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions , 2012, Comput. Stat. Data Anal..

[29]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[30]  K. B. Kulasekera,et al.  Density estimation using asymmetric kernels and Bayes bandwidths with censored data , 2010 .