A quantum optomechanical interface beyond the resolved sideband limit

Mechanical oscillators which respond to radiation pressure are a promising means of transferring quantum information between light and matter. Optical--mechanical state swaps are a key operation in this setting. Existing proposals for optomechanical state swap interfaces are only effective in the resolved sideband limit. Here, we show that it is possible to fully and deterministically exchange mechanical and optical states outside of this limit, in the common case that the cavity linewidth is larger than the mechanical resonance frequency. This high-bandwidth interface opens up a significantly larger region of optomechanical parameter space, allowing generation of non-classical motional states of high-quality, low-frequency mechanical oscillators.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Quantum Langevin Equation , 1981 .

[3]  Schumacher,et al.  Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[4]  M. S. Kim,et al.  Efficient quantum computation using coherent states , 2001, quant-ph/0109077.

[5]  G. Milburn,et al.  Quantum computation with optical coherent states , 2002, QELS 2002.

[6]  Stefano Mancini,et al.  Scheme for teleportation of quantum states onto a mechanical resonator. , 2003, Physical review letters.

[7]  A. P. Lund,et al.  Conditional production of superpositions of coherent states with inefficient photon detection , 2004 .

[8]  Light-matter quantum interface , 2003, quant-ph/0312156.

[9]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[10]  A Lemaître,et al.  Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. , 2004, Physical review letters.

[11]  H J Mamin,et al.  Feedback cooling of a cantilever's fundamental mode below 5 mK. , 2007, Physical review letters.

[12]  Florian Marquardt,et al.  Quantum theory of cavity-assisted sideband cooling of mechanical motion. , 2007, Physical review letters.

[13]  Aires Ferreira,et al.  Optomechanical entanglement between a movable mirror and a cavity field , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[14]  D. Bouwmeester,et al.  Creating and verifying a quantum superposition in a micro-optomechanical system , 2008, 0807.1834.

[15]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[16]  Excess-noise-free recording and uploading of nonclassical states to continuous-variable quantum memory , 2008, 0804.3368.

[17]  Masahide Sasaki,et al.  Generation of large-amplitude coherent-state superposition via ancilla-assisted photon subtraction. , 2008, Physical review letters.

[18]  D. Vitali,et al.  Micromechanical oscillator ground-state cooling via resonant intracavity optical gain or absorption , 2009, 0906.3621.

[19]  S. Girvin,et al.  Quantum noise interference and backaction cooling in cavity nanomechanics. , 2009, Physical review letters.

[20]  A. Dantan,et al.  Large ion Coulomb crystals: A near-ideal medium for coupling optical cavity modes to matter , 2009, 0909.4139.

[21]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[22]  R. Filip,et al.  Noise-resilient quantum interface based on quantum nondemolition interactions , 2010, 1002.0225.

[23]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[24]  A. Sørensen,et al.  Quantum interface between light and atomic ensembles , 2008, 0807.3358.

[25]  Yanbei Chen,et al.  Preparing a mechanical oscillator in non-gaussian quantum states. , 2010, Physical review letters.

[26]  K. Jacobs,et al.  Ultraefficient cooling of resonators: beating sideband cooling with quantum control. , 2011, Physical review letters.

[27]  Ultra-Efficient Cooling of Resonators: Beating Sideband Cooling with Quantum Control , 2011 .

[28]  M. Aspelmeyer,et al.  Quantum entanglement and teleportation in pulsed cavity optomechanics , 2011, 1108.2586.

[29]  G. Milburn,et al.  An introduction to quantum optomechanics , 2011 .

[30]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.

[31]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[32]  T. Kippenberg,et al.  Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling , 2011 .

[33]  G. J. Milburn,et al.  Pulsed quantum optomechanics , 2010, Proceedings of the National Academy of Sciences.

[34]  Feedback-enhanced sensitivity in optomechanics: Surpassing the parametric instability barrier , 2011, 1109.2381.

[35]  A Retzker,et al.  Pulsed laser cooling for cavity optomechanical resonators. , 2011, Physical review letters.

[36]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[37]  Ying-Dan Wang,et al.  Using interference for high fidelity quantum state transfer in optomechanics. , 2011, Physical review letters.

[38]  Q. Lin,et al.  A high-resolution microchip optomechanical accelerometer , 2012, Nature Photonics.

[39]  R. Blatt,et al.  Tunable Ion-Photon Entanglement in an Optical Cavity , 2012, Nature.

[40]  W. P. Bowen,et al.  Quantum state preparation of a mechanical resonator using an optomechanical geometric phase , 2012, 1210.0642.

[41]  T. Palomaki,et al.  State Transfer Between a Mechanical Oscillator and Microwave Fields in the Quantum Regime , 2012, 1206.5562.

[42]  Mani Hossein-Zadeh,et al.  Sub-pg mass sensing and measurement with an optomechanical oscillator. , 2013, Optics express.

[43]  A. Tipsmark,et al.  Amplification of realistic Schrödinger-cat-state-like states by homodyne heralding , 2013, 1302.0268.

[44]  Gao-xiang Li,et al.  Quantum interference effects on ground-state optomechanical cooling , 2013 .

[45]  T. A. Palomaki,et al.  Coherent state transfer between itinerant microwave fields and a mechanical oscillator , 2012, Nature.

[46]  M. Aspelmeyer,et al.  Cooling-by-measurement and mechanical state tomography via pulsed optomechanics , 2012, Nature Communications.

[47]  Amit Vainsencher,et al.  Nanomechanical coupling between microwave and optical photons , 2013, Nature Physics.

[48]  P. Zoller,et al.  Cavity-Enhanced Long-Distance Coupling of an Atomic Ensemble to a Micromechanical Membrane , 2013, 1301.1451.

[49]  T. Palomaki,et al.  Entangling Mechanical Motion with Microwave Fields , 2013, Science.

[50]  K. Børkje,et al.  Ground-state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency , 2014, 1402.6929.

[51]  Martin Heiss,et al.  Quantum dot opto-mechanics in a fully self-assembled nanowire. , 2014, Nano letters.

[52]  R. W. Andrews,et al.  Bidirectional and efficient conversion between microwave and optical light , 2013, Nature Physics.

[53]  Tobias Nobauer,et al.  Protecting a spin ensemble against decoherence in the strong-coupling regime of cavity QED , 2014, Nature Physics.

[54]  Keyu Xia,et al.  An opto-magneto-mechanical quantum interface between distant superconducting qubits , 2014, Scientific reports.

[55]  S. Chakram,et al.  Dissipation in ultrahigh quality factor SiN membrane resonators. , 2013, Physical review letters.

[56]  S. Onoda,et al.  Multi-mode storage and retrieval of microwave fields in a spin ensemble , 2014, 1401.7939.

[57]  S. Schmid,et al.  Optical detection of radio waves through a nanomechanical transducer , 2013, Nature.

[58]  M. Aspelmeyer,et al.  Silicon optomechanical crystal resonator at millikelvin temperatures , 2014 .

[59]  W. Bowen,et al.  Coherent control and feedback cooling in a remotely coupled hybrid atom–optomechanical system , 2014, 1404.3445.

[60]  Yong‐Chun Liu,et al.  Cooling of macroscopic mechanical resonators in hybrid atom-optomechanical systems , 2015 .

[61]  Q. Gong,et al.  Cooling mechanical resonators to the quantum ground state from room temperature , 2014, 1406.7359.

[62]  P. Treutlein,et al.  Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system. , 2014, Nature nanotechnology.

[63]  R. W. Andrews,et al.  Quantum-enabled temporal and spectral mode conversion of microwave signals , 2015, Nature Communications.

[64]  Rosa Tualle-Brouri,et al.  Experimental generation of squeezed cat States with an operation allowing iterative growth. , 2015, Physical review letters.

[65]  L. Tian Optoelectromechanical transducer: Reversible conversion between microwave and optical photons , 2014, 1407.3035.

[66]  G. Brawley,et al.  Nonlinear optomechanical measurement of mechanical motion , 2014, Nature Communications.

[67]  J. P. Moura,et al.  Mechanical Resonators for Quantum Optomechanics Experiments at Room Temperature. , 2015, Physical review letters.

[68]  Zach DeVito,et al.  Opt , 2017 .