Age-related nanostructural and nanomechanical changes of individual human cartilage aggrecan monomers and their glycosaminoglycan side chains.

[1]  Christine Ortiz,et al.  Nanomechanics of the Cartilage Extracellular Matrix. , 2011, Annual review of materials research.

[2]  A. Grodzinsky,et al.  Adult bone marrow stromal cell-based tissue-engineered aggrecan exhibits ultrastructure and nanomechanical properties superior to native cartilage. , 2010, Osteoarthritis and cartilage.

[3]  A. Grodzinsky,et al.  Adult equine bone marrow stromal cells produce a cartilage-like ECM mechanically superior to animal-matched adult chondrocytes. , 2010, Matrix biology : journal of the International Society for Matrix Biology.

[4]  A. Grodzinsky,et al.  Cartilage aggrecan can undergo self-adhesion. , 2008, Biophysical journal.

[5]  A. Grodzinsky,et al.  Nanoscale shear deformation mechanisms of opposing cartilage aggrecan macromolecules. , 2007, Biophysical journal.

[6]  U. Aebi,et al.  Developing scanning probe-based nanodevices--stepping out of the laboratory into the clinic. , 2007, Nanomedicine : nanotechnology, biology, and medicine.

[7]  A. Grodzinsky,et al.  Lateral nanomechanics of cartilage aggrecan macromolecules. , 2007, Biophysical journal.

[8]  P. Roughley,et al.  The Glycosaminoglycan Attachment Regions of Human Aggrecan* , 2006, Journal of Biological Chemistry.

[9]  P. Roughley,et al.  The involvement of aggrecan polymorphism in degeneration of human intervertebral disc and articular cartilage. , 2006, European cells & materials.

[10]  Christine Ortiz,et al.  Compressive nanomechanics of opposing aggrecan macromolecules. , 2006, Journal of biomechanics.

[11]  J. Dudhia Aggrecan, aging and assembly in articular cartilage , 2005, Cellular and Molecular Life Sciences CMLS.

[12]  Mark Bathe,et al.  A coarse-grained molecular model for glycosaminoglycans: application to chondroitin, chondroitin sulfate, and hyaluronic acid. , 2005, Biophysical journal.

[13]  A. Grodzinsky,et al.  Nanoscale Conformation and Compressibility of Cartilage Aggrecan Using Microcontact Printing and Atomic Force Microscopy , 2005 .

[14]  J. Thyberg Electron microscopy of cartilage proteoglycans , 1977, The Histochemical Journal.

[15]  P. Patwari,et al.  Individual cartilage aggrecan macromolecules and their constituent glycosaminoglycans visualized via atomic force microscopy. , 2003, Journal of structural biology.

[16]  B. Todd,et al.  Connecting nanoscale images of proteins with their genetic sequences. , 2003, Biophysical journal.

[17]  A. Grodzinsky,et al.  Molecular-Level Theoretical Model for Electrostatic Interactions within Polyelectrolyte Brushes: Applications to Charged Glycosaminoglycans , 2003 .

[18]  R. Mason,et al.  The G1 domain of aggrecan released from porcine articular cartilage forms stable complexes with hyaluronan/link protein. , 2003, Rheumatology.

[19]  T. Burn,et al.  Characterization of human aggrecanase 2 (ADAM-TS5): substrate specificity studies and comparison with aggrecanase 1 (ADAM-TS4). , 2002, Matrix biology : journal of the International Society for Matrix Biology.

[20]  U. Aebi,et al.  Nanotechnology in Medicine: Moving from the Bench to the Bedside , 2002 .

[21]  R. Bank,et al.  Age-related accumulation of the advanced glycation endproduct pentosidine in human articular cartilage aggrecan: the use of pentosidine levels as a quantitative measure of protein turnover. , 2001, Matrix biology : journal of the International Society for Matrix Biology.

[22]  Albert C. Chen,et al.  Compressive properties and function—composition relationships of developing bovine articular cartilage , 2001, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[23]  F Eckstein,et al.  Age-related changes in the morphology and deformational behavior of knee joint cartilage. , 2001, Arthritis and rheumatism.

[24]  R. Midura,et al.  Keratan sulfate disaccharide composition determined by FACE analysis of keratanase II and endo-beta-galactosidase digestion products. , 2001, Glycobiology.

[25]  J. Age-related Changes in the Structure of the Proteoglycan Subunits from Human Articular Cartilage , 2001 .

[26]  J. Sandy,et al.  Analysis of aggrecan in human knee cartilage and synovial fluid indicates that aggrecanase (ADAMTS) activity is responsible for the catabolic turnover and loss of whole aggrecan whereas other protease activity is required for C-terminal processing in vivo. , 2001, The Biochemical journal.

[27]  J. Fritz,et al.  Supramolecular structure of a new family of circular proteoglycans mediating cell adhesion in sponges. , 2000, Journal of structural biology.

[28]  G. Brown,et al.  600 MHz NMR studies of human articular cartilage keratan sulfates. , 1999, European journal of biochemistry.

[29]  A. Fosang,et al.  Recombinant Human Aggrecan G1-G2 Exhibits Native Binding Properties and Substrate Specificity for Matrix Metalloproteinases and Aggrecanase* , 1999, The Journal of Biological Chemistry.

[30]  M. Bayliss,et al.  Human Aggrecan Keratan Sulfate Undergoes Structural Changes during Adolescent Development* , 1998, The Journal of Biological Chemistry.

[31]  R. Schneiderman,et al.  Aggrecan turnover in human articular cartilage: use of aspartic acid racemization as a marker of molecular age. , 1998, Archives of biochemistry and biophysics.

[32]  M. Elimelech,et al.  Surface Element Integration: A Novel Technique for Evaluation of DLVO Interaction between a Particle and a Flat Plate , 1997, Journal of colloid and interface science.

[33]  R. Midura,et al.  Chemical and Immunological Assay of the Nonreducing Terminal Residues of Chondroitin Sulfate from Human Aggrecan* , 1997, The Journal of Biological Chemistry.

[34]  J. Weidner,et al.  Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. , 1997, The Journal of clinical investigation.

[35]  J. Fritz,et al.  Probing single biomolecules with atomic force microscopy. , 1997, Journal of structural biology.

[36]  T. Hardingham,et al.  Age-related changes in the content of the C-terminal region of aggrecan in human articular cartilage. , 1996, The Biochemical journal.

[37]  A. Grodzinsky,et al.  A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics. , 1995, Journal of biomechanical engineering.

[38]  R. Midura,et al.  Structure of chondroitin sulfate on aggrecan isolated from bovine tibial and costochondral growth plates , 1995, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[39]  A. Ravve,et al.  Principles of Polymer Chemistry , 1995 .

[40]  J. Buckwalter,et al.  Age‐Related changes in cartilage proteoglycans: Quantitative electron microscopic studies , 1994, Microscopy research and technique.

[41]  George M. Whitesides,et al.  Microfabrication by microcontact printing of self‐assembled monolayers , 1994 .

[42]  T. Hardingham,et al.  Proteoglycans: many forms and many functions , 1992, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[43]  M. Lark,et al.  Identification of a stromelysin cleavage site within the interglobular domain of human aggrecan. Evidence for proteolysis at this site in vivo in human articular cartilage. , 1992, The Journal of biological chemistry.

[44]  J. Sandy,et al.  Catabolism of aggrecan in cartilage explants. Identification of a major cleavage site within the interglobular domain. , 1991, The Journal of biological chemistry.

[45]  E. Hay,et al.  Cell Biology of Extracellular Matrix , 1988, Springer US.

[46]  F. Barry Proteoglycans: structure and function. , 1990, Biochemical Society transactions.

[47]  D. Heinegård,et al.  Cartilage proteoglycans. Assembly with hyaluronate and link protein as studied by electron microscopy. , 1988, The Biochemical journal.

[48]  D. Buttle,et al.  Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. , 1986, Biochimica et biophysica acta.

[49]  H. Muir,et al.  Structure of newly synthesised (35S)‐proteoglycans and (35s)‐proteoglycan turnover products of cartilage explant cultures from dogs with experimental osteoarthritis , 1985, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[50]  R. Timpl,et al.  Domain structure of cartilage proteoglycans revealed by rotary shadowing of intact and fragmented molecules. , 1984, The Biochemical journal.

[51]  J. Buckwalter,et al.  Structural changes during development in bovine fetal epiphyseal cartilage. , 1981, Collagen and related research.

[52]  J. Buckwalter,et al.  Electron microscopic studies of cartilage proteoglycans. Direct evidence for the variable length of the chondroitin sulfate-rich region of proteoglycan subunit core protein. , 1982, The Journal of biological chemistry.

[53]  P. Roughley,et al.  O-Linked oligosaccharides of human articular cartilage proteoglycan. , 1982, Biochimica et biophysica acta.

[54]  K. Nakazawa,et al.  Structural analysis of chick-embryo cartilage proteoglycan by selective degradation with chondroitin lyases (chondroitinases) and endo-beta-D-galactosidase (keratanase). , 1980, The Biochemical journal.

[55]  R. Elliott,et al.  Changes with age in the glycosaminoglycans of human articular cartilage. , 1979, Annals of the Rheumatic Diseases.

[56]  M. Bayliss,et al.  Age-related changes in the composition and structure of human articular-cartilage proteoglycans. , 1978, The Biochemical journal.

[57]  W. Comper,et al.  Physiological function of connective tissue polysaccharides. , 1978, Physiological reviews.

[58]  D Heinegård,et al.  Articular-cartilage proteoglycans in aging and osteoarthritis. , 1978, The Biochemical journal.

[59]  L. Rosenberg,et al.  Electron microscopic studies of proteoglycan aggregates from bovine articular cartilage. , 1975, The Journal of biological chemistry.

[60]  Hugh C Burry,et al.  Adult Articular Cartilage , 1974 .

[61]  M. A. R. Freeman,et al.  Adult Articular Cartilage , 1973 .