Affine Insertion and Pieri Rules for the Affine Grassmannian

We study combinatorial aspects of the Schubert calculus of the affine Grassmannian Gr associated with SL(n,C). Our main results are: 1) Pieri rules for the Schubert bases of H^*(Gr) and H_*(Gr), which expresses the product of a special Schubert class and an arbitrary Schubert class in terms of Schubert classes. 2) A new combinatorial definition for k-Schur functions, which represent the Schubert basis of H_*(Gr). 3) A combinatorial interpretation of the pairing between homology and cohomology of the affine Grassmannian. These results are obtained by interpreting the Schubert bases of Gr combinatorially as generating functions of objects we call strong and weak tableaux, which are respectively defined using the strong and weak orders on the affine symmetric group. We define a bijection called affine insertion, generalizing the Robinson-Schensted Knuth correspondence, which sends certain biwords to pairs of tableaux of the same shape, one strong and one weak. Affine insertion offers a duality between the weak and strong orders which does not seem to have been noticed previously. Our cohomology Pieri rule conjecturally extends to the affine flag manifold, and we give a series of related combinatorial conjectures.

[1]  K. C. Misra,et al.  Crystal base for the basic representation of Uq(sl(n)) , 1990 .

[2]  Sergey Fomin,et al.  Schensted Algorithms for Dual Graded Graphs , 1995 .

[3]  Marc A. A. van Leeuwen,et al.  Edge Sequences, Ribbon Tableaux, and an Action of Affine Permutations , 1999, Eur. J. Comb..

[4]  W. Fulton Young Tableaux: With Applications to Representation Theory and Geometry , 1996 .

[5]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[6]  L. Lapointe,et al.  QUANTUM COHOMOLOGY AND THE k-SCHUR BASIS , 2007 .

[7]  Jian-yi Shi,et al.  The Kazhdan-Lusztig cells in certain affine Weyl groups , 1986 .

[8]  Jennifer Morse,et al.  Tableaux on k+1-cores, reduced words for affine permutations, and k-Schur expansions , 2005, J. Comb. Theory, Ser. A.

[9]  V. Kac Infinite dimensional Lie algebras: Frontmatter , 1990 .

[10]  Jennifer Morse,et al.  Schur function analogs for a filtration of the symmetric function space , 2003, J. Comb. Theory, Ser. A.

[11]  Jennifer Morse,et al.  A k-tableau characterization of k-Schur functions , 2005, math/0505519.

[12]  PERIODIC PERMUTATIONS AND THE ROBINSON–SCHENSTED CORRESPONDENCE , 2003 .

[13]  Naihuan Jing,et al.  Vertex operators and Hall-Littlewood symmetric functions , 1991 .

[14]  Alain Lascoux,et al.  Ribbon tableaux, Hall–Littlewood functions, quantum affine algebras, and unipotent varieties , 1995 .

[15]  R. Carter,et al.  THE KAZHDAN‐LUSZTIG CELLS IN CERTAIN AFFINE WEYL GROUPS (Lecture Notes in Mathematics 1179) , 1987 .

[16]  Shrawan Kumar,et al.  Kac-Moody Groups, their Flag Varieties and Representation Theory , 2002 .

[17]  M. Raghunathan,et al.  A Bruhat decomposition for the loop space of a compact group: A new approach to results of Bott. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[18]  George Lusztig,et al.  Some examples of square integrable representations of semisimple p-adic groups , 1983 .

[19]  Raoul Bott,et al.  The space of loops on a Lie group. , 1958 .

[20]  Tetsuji Miwa,et al.  Crystal base for the basic representation of $$U_q (\widehat{\mathfrak{s}\mathfrak{l}}(n))$$ , 1990 .

[21]  Jerzy Weyman,et al.  Graded Characters of Modules Supported in the Closure of a Nilpotent Conjugacy Class , 2000, Eur. J. Comb..

[22]  Thomas Lam,et al.  Schubert polynomials for the affine Grassmannian , 2006, math/0603125.

[23]  J. Humphreys Reflection groups and coxeter groups , 1990 .

[24]  Anders Björner,et al.  Affine permutations of type A , 1995, Electron. J. Comb..

[25]  Thomas Lam,et al.  Dual graded graphs for Kac-Moody algebras , 2007 .

[26]  Alain Lascoux Ordering the Affine Symmetric Group , 2001 .

[27]  A. Lascoux,et al.  Tableau atoms and a new Macdonald positivity conjecture Duke Math J , 2000 .

[28]  Thomas Lam Affine Stanley symmetric functions , 2005 .

[29]  Frank Sottile,et al.  Schubert polynomials, the Bruhat order, and the geometry of flag manifolds , 1997 .

[30]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[31]  R. Carter REFLECTION GROUPS AND COXETER GROUPS (Cambridge Studies in Advanced Mathematics 29) , 1991 .

[32]  Mike Zabrocki,et al.  Hall–Littlewood Vertex Operators and Generalized Kostka Polynomials☆ , 2000 .

[33]  Frank Sottile,et al.  Pieri's formula for flag manifolds and Schubert polynomials , 1996 .

[34]  Positivity in equivariant Schubert calculus , 1999, math/9908172.

[35]  B Kostant,et al.  The nil Hecke ring and cohomology of G/P for a Kac-Moody group G. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Mark Haiman,et al.  Hilbert schemes, polygraphs and the Macdonald positivity conjecture , 2000, math/0010246.

[37]  A. Garsia,et al.  A graded representation model for Macdonald's polynomials. , 1993, Proceedings of the National Academy of Sciences of the United States of America.