Affine Insertion and Pieri Rules for the Affine Grassmannian
暂无分享,去创建一个
[1] K. C. Misra,et al. Crystal base for the basic representation of Uq(sl(n)) , 1990 .
[2] Sergey Fomin,et al. Schensted Algorithms for Dual Graded Graphs , 1995 .
[3] Marc A. A. van Leeuwen,et al. Edge Sequences, Ribbon Tableaux, and an Action of Affine Permutations , 1999, Eur. J. Comb..
[4] W. Fulton. Young Tableaux: With Applications to Representation Theory and Geometry , 1996 .
[5] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[6] L. Lapointe,et al. QUANTUM COHOMOLOGY AND THE k-SCHUR BASIS , 2007 .
[7] Jian-yi Shi,et al. The Kazhdan-Lusztig cells in certain affine Weyl groups , 1986 .
[8] Jennifer Morse,et al. Tableaux on k+1-cores, reduced words for affine permutations, and k-Schur expansions , 2005, J. Comb. Theory, Ser. A.
[9] V. Kac. Infinite dimensional Lie algebras: Frontmatter , 1990 .
[10] Jennifer Morse,et al. Schur function analogs for a filtration of the symmetric function space , 2003, J. Comb. Theory, Ser. A.
[11] Jennifer Morse,et al. A k-tableau characterization of k-Schur functions , 2005, math/0505519.
[12] PERIODIC PERMUTATIONS AND THE ROBINSON–SCHENSTED CORRESPONDENCE , 2003 .
[13] Naihuan Jing,et al. Vertex operators and Hall-Littlewood symmetric functions , 1991 .
[14] Alain Lascoux,et al. Ribbon tableaux, Hall–Littlewood functions, quantum affine algebras, and unipotent varieties , 1995 .
[15] R. Carter,et al. THE KAZHDAN‐LUSZTIG CELLS IN CERTAIN AFFINE WEYL GROUPS (Lecture Notes in Mathematics 1179) , 1987 .
[16] Shrawan Kumar,et al. Kac-Moody Groups, their Flag Varieties and Representation Theory , 2002 .
[17] M. Raghunathan,et al. A Bruhat decomposition for the loop space of a compact group: A new approach to results of Bott. , 1975, Proceedings of the National Academy of Sciences of the United States of America.
[18] George Lusztig,et al. Some examples of square integrable representations of semisimple p-adic groups , 1983 .
[19] Raoul Bott,et al. The space of loops on a Lie group. , 1958 .
[20] Tetsuji Miwa,et al. Crystal base for the basic representation of $$U_q (\widehat{\mathfrak{s}\mathfrak{l}}(n))$$ , 1990 .
[21] Jerzy Weyman,et al. Graded Characters of Modules Supported in the Closure of a Nilpotent Conjugacy Class , 2000, Eur. J. Comb..
[22] Thomas Lam,et al. Schubert polynomials for the affine Grassmannian , 2006, math/0603125.
[23] J. Humphreys. Reflection groups and coxeter groups , 1990 .
[24] Anders Björner,et al. Affine permutations of type A , 1995, Electron. J. Comb..
[25] Thomas Lam,et al. Dual graded graphs for Kac-Moody algebras , 2007 .
[26] Alain Lascoux. Ordering the Affine Symmetric Group , 2001 .
[27] A. Lascoux,et al. Tableau atoms and a new Macdonald positivity conjecture Duke Math J , 2000 .
[28] Thomas Lam. Affine Stanley symmetric functions , 2005 .
[29] Frank Sottile,et al. Schubert polynomials, the Bruhat order, and the geometry of flag manifolds , 1997 .
[30] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[31] R. Carter. REFLECTION GROUPS AND COXETER GROUPS (Cambridge Studies in Advanced Mathematics 29) , 1991 .
[32] Mike Zabrocki,et al. Hall–Littlewood Vertex Operators and Generalized Kostka Polynomials☆ , 2000 .
[33] Frank Sottile,et al. Pieri's formula for flag manifolds and Schubert polynomials , 1996 .
[34] Positivity in equivariant Schubert calculus , 1999, math/9908172.
[35] B Kostant,et al. The nil Hecke ring and cohomology of G/P for a Kac-Moody group G. , 1986, Proceedings of the National Academy of Sciences of the United States of America.
[36] Mark Haiman,et al. Hilbert schemes, polygraphs and the Macdonald positivity conjecture , 2000, math/0010246.
[37] A. Garsia,et al. A graded representation model for Macdonald's polynomials. , 1993, Proceedings of the National Academy of Sciences of the United States of America.