Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur batteries

[1]  Hong‐Jie Peng,et al.  Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries , 2014 .

[2]  Xiaogang Han,et al.  Reactivation of dissolved polysulfides in Li–S batteries based on atomic layer deposition of Al2O3 in nanoporous carbon cloth , 2013 .

[3]  Ling Huang,et al.  Porous graphitic carbon loading ultra high sulfur as high-performance cathode of rechargeable lithium-sulfur batteries. , 2013, ACS applied materials & interfaces.

[4]  Jiaqi Huang,et al.  In Situ Monitoring the Role of Working Metal Catalyst Nanoparticles for Ultrahigh Purity Single‐Walled Carbon Nanotubes , 2013 .

[5]  Jung Tae Lee,et al.  Sulfur‐Infiltrated Micro‐ and Mesoporous Silicon Carbide‐Derived Carbon Cathode for High‐Performance Lithium Sulfur Batteries , 2013, Advanced materials.

[6]  J. Eckert,et al.  Hydrothermal nanocasting: Synthesis of hierarchically porous carbon monoliths and their application in lithium-sulfur batteries , 2013 .

[7]  Feng Li,et al.  Carbon–sulfur composites for Li–S batteries: status and prospects , 2013 .

[8]  Ilias Belharouak,et al.  Role of Polysulfides in Self‐Healing Lithium–Sulfur Batteries , 2013 .

[9]  Jiaqi Huang,et al.  Aligned sulfur-coated carbon nanotubes with a polyethylene glycol barrier at one end for use as a high efficiency sulfur cathode , 2013 .

[10]  S. Dou,et al.  Cathode materials for next generation lithium ion batteries , 2013 .

[11]  M. Oschatz,et al.  A new route for the preparation of mesoporous carbon materials with high performance in lithium-sulphur battery cathodes. , 2013, Chemical communications.

[12]  Huichao Chen,et al.  High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li-S batteries. , 2013, ACS applied materials & interfaces.

[13]  A. Panchenko,et al.  Twin polymerization at spherical hard templates: an approach to size-adjustable carbon hollow spheres with micro- or mesoporous shells. , 2013, Angewandte Chemie.

[14]  Shengbo Zhang,et al.  Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions , 2013 .

[15]  Guangmin Zhou,et al.  Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries. , 2013, ACS nano.

[16]  Jiaqi Huang,et al.  The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. , 2013, Small.

[17]  J. Eckert,et al.  Hydrothermal carbon-based nanostructured hollow spheres as electrode materials for high-power lithium-sulfur batteries. , 2013, Physical chemistry chemical physics : PCCP.

[18]  Jung Tae Lee,et al.  High temperature stabilization of lithium–sulfur cells with carbon nanotube current collector , 2013 .

[19]  Qiang Sun,et al.  High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery. , 2013, ACS applied materials & interfaces.

[20]  Guangyuan Zheng,et al.  Nanostructured sulfur cathodes. , 2013, Chemical Society reviews.

[21]  Qiang Zhang,et al.  Entrapment of sulfur in hierarchical porous graphene for lithium-sulfur batteries with high rate per , 2013 .

[22]  Min-Kyu Song,et al.  Lithium/sulfur batteries with high specific energy: old challenges and new opportunities. , 2013, Nanoscale.

[23]  Jens Tübke,et al.  Development and costs calculation of lithium–sulfur cells with high sulfur load and binder free electrodes , 2013 .

[24]  Guangyuan Zheng,et al.  Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. , 2013, Nano letters.

[25]  Jiaqi Huang,et al.  Composite Cathodes Containing SWCNT@S Coaxial Nanocables: Facile Synthesis, Surface Modification, and Enhanced Performance for Li‐Ion Storage , 2013 .

[26]  Guoqiang Ma,et al.  Flexible self-supporting graphene–sulfur paper for lithium sulfur batteries , 2013 .

[27]  Kevin A. Hays,et al.  Revisit Carbon/Sulfur Composite for Li-S Batteries , 2013 .

[28]  Jiaqi Huang,et al.  Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li-S batteries. , 2012, ACS nano.

[29]  Lin Gu,et al.  Smaller sulfur molecules promise better lithium-sulfur batteries. , 2012, Journal of the American Chemical Society.

[30]  Yang-Kook Sun,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.

[31]  Feng Li,et al.  A flexible nanostructured sulphur–carbon nanotube cathode with high rate performance for Li-S batteries , 2012 .

[32]  X. Lou,et al.  Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries. , 2012, Angewandte Chemie.

[33]  K. Pinkwart,et al.  Lithium–sulphur batteries – binder free carbon nanotubes electrode examined with various electrolytes , 2012 .

[34]  Feng Li,et al.  A microporous-mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li-S batteries. , 2012, Physical chemistry chemical physics : PCCP.

[35]  Jiulin Wang,et al.  Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li–S batteries , 2012 .

[36]  L. Nazar,et al.  Graphene-enveloped sulfur in a one pot reaction: a cathode with good coulombic efficiency and high practical sulfur content. , 2012, Chemical communications.

[37]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[38]  A. Mohamed,et al.  Synthesis of aligned carbon nanotubes , 2011 .

[39]  Qiang Zhang,et al.  Carbon nanotube mass production: principles and processes. , 2011, ChemSusChem.

[40]  H. Dai,et al.  Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. , 2011, Nano letters.

[41]  Xiulei Ji,et al.  Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. , 2011, Nature Communications.

[42]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[43]  Jiaqi Huang,et al.  Carbon-nanotube-array double helices. , 2010, Angewandte Chemie.

[44]  Jiaqi Huang,et al.  Vertically aligned carbon nanotube arrays grown on a lamellar catalyst by fluidized bed catalytic chemical vapor deposition , 2009 .

[45]  W. Bauhofer,et al.  A review and analysis of electrical percolation in carbon nanotube polymer composites , 2009 .

[46]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[47]  Yuriy V. Mikhaylik,et al.  Polysulfide Shuttle Study in the Li/S Battery System , 2004 .

[48]  I. Kinloch,et al.  Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites , 2003 .

[49]  Naixin Xu,et al.  A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries , 2002 .