Shelterin: the protein complex that shapes and safeguards human telomeres

Added by telomerase, arrays of TTAGGG repeats specify the ends of human chromosomes. A complex formed by six telomere-specific proteins associates with this sequence and protects chromosome ends. By analogy to other chromosomal protein complexes such as condensin and cohesin, I will refer to this complex as shelterin. Three shelterin subunits, TRF1, TRF2, and POT1 directly recognize TTAGGG repeats. They are interconnected by three additional shelterin proteins, TIN2, TPP1, and Rap1, forming a complex that allows cells to distinguish telomeres from sites of DNA damage. Without the protective activity of shelterin, telomeres are no longer hidden from the DNA damage surveillance and chromosome ends are inappropriately processed by DNA repair pathways. How does shelterin avert these events? The current data argue that shelterin is not a static structural component of the telomere. Instead, shelterin is emerging as a protein complex with DNA remodeling activity that acts together with several associated DNA repair factors to change the structure of the telomeric DNA, thereby protecting chromosome ends. Six shelterin subunits: TRF1, TRF2, TIN2, Rap1, TPP1, and POT1.

[1]  T. Lange,et al.  Tankyrase promotes telomere elongation in human cells , 2000, Current Biology.

[2]  J. Qin,et al.  Telosome, a Mammalian Telomere-associated Complex Formed by Multiple Telomeric Proteins* , 2004, Journal of Biological Chemistry.

[3]  D. Shore,et al.  A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. , 1992, Genes & development.

[4]  J. Griffith,et al.  Mammalian Telomeres End in a Large Duplex Loop , 1999, Cell.

[5]  Y. Nishimura,et al.  Comparison between TRF2 and TRF1 of their telomeric DNA‐bound structures and DNA‐binding activities , 2005, Protein science : a publication of the Protein Society.

[6]  J. Murnane,et al.  Telomere instability in a human tumor cell line expressing a dominant-negative WRN protein , 2003, Human Genetics.

[7]  Z. Zhong,et al.  A mammalian factor that binds telomeric TTAGGG repeats in vitro , 1992, Molecular and cellular biology.

[8]  T. Lange,et al.  Identification of Human Rap1 Implications for Telomere Evolution , 2000, Cell.

[9]  Y. Hiraoka,et al.  Telomere binding of the Rap1 protein is required for meiosis in fission yeast , 2001, Current Biology.

[10]  T. Lange,et al.  Significant Role for p16INK4a in p53-Independent Telomere-Directed Senescence , 2004, Current Biology.

[11]  L. Cazes,et al.  Alternative Lengthening of Telomeres Is Characterized by High Rates of Telomeric Exchange , 2004, Cancer Research.

[12]  F. Ishikawa,et al.  spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast , 2001, Current Biology.

[13]  A. Smogorzewska,et al.  Different telomere damage signaling pathways in human and mouse cells , 2002, The EMBO journal.

[14]  M. Mann,et al.  ERCC1/XPF removes the 3' overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. , 2003, Molecular cell.

[15]  Susan Smith,et al.  TRF1 is a dimer and bends telomeric DNA , 1997, The EMBO journal.

[16]  Paul Nurse,et al.  Fission yeast Taz1 protein is required for meiotic telomere clustering and recombination , 1998, Nature.

[17]  T. Lange,et al.  DNA Damage Foci at Dysfunctional Telomeres , 2003, Current Biology.

[18]  Susan Smith,et al.  A Dynamic Molecular Link between the Telomere Length Regulator TRF1 and the Chromosome End Protector TRF2 , 2004, Current Biology.

[19]  S. Kolvraa,et al.  The Werner syndrome helicase and exonuclease cooperate to resolve telomeric D loops in a manner regulated by TRF1 and TRF2. , 2004, Molecular cell.

[20]  T. Lange Protection of mammalian telomeres , 2002, Oncogene.

[21]  A. Smogorzewska,et al.  Regulation of telomerase by telomeric proteins. , 2004, Annual review of biochemistry.

[22]  T. Cech,et al.  Switching Human Telomerase On and Off with hPOT1 Protein in Vitro* , 2005, Journal of Biological Chemistry.

[23]  Susan Smith,et al.  Resolution of Sister Telomere Association Is Required for Progression Through Mitosis , 2004, Science.

[24]  A. Houtsmuller,et al.  Dynamics of Protein Binding to Telomeres in Living Cells: Implications for Telomere Structure and Function , 2004, Molecular and Cellular Biology.

[25]  J. Petrini,et al.  A new connection at human telomeres: association of the Mre11 complex with TRF2. , 2000, Cold Spring Harbor symposia on quantitative biology.

[26]  M. Hande,et al.  Ku acts in a unique way at the mammalian telomere to prevent end joining. , 2000, Genes & development.

[27]  Lynda Chin,et al.  p53 Deficiency Rescues the Adverse Effects of Telomere Loss and Cooperates with Telomere Dysfunction to Accelerate Carcinogenesis , 1999, Cell.

[28]  J. Shay,et al.  Telomere-end processing the terminal nucleotides of human chromosomes. , 2005, Molecular cell.

[29]  H. Erdjument-Bromage,et al.  A Human Telomeric Protein , 1995, Science.

[30]  T. Lange,et al.  POT1 as a terminal transducer of TRF1 telomere length control , 2003, Nature.

[31]  M. Kastan,et al.  The Telomeric Protein TRF2 Binds the ATM Kinase and Can Inhibit the ATM-Dependent DNA Damage Response , 2004, PLoS biology.

[32]  D. Shore,et al.  RAP1: a protean regulator in yeast. , 1994, Trends in genetics : TIG.

[33]  N. Maizels,et al.  The Bloom’s Syndrome Helicase Unwinds G4 DNA* , 1998, The Journal of Biological Chemistry.

[34]  G. Morin,et al.  TANK2, a New TRF1-associated Poly(ADP-ribose) Polymerase, Causes Rapid Induction of Cell Death upon Overexpression* , 2001, The Journal of Biological Chemistry.

[35]  Jun Qin,et al.  The Human Rap1 Protein Complex and Modulation of Telomere Length* , 2004, Journal of Biological Chemistry.

[36]  J. Griffith,et al.  TRF1 binds a bipartite telomeric site with extreme spatial flexibility , 1999, The EMBO journal.

[37]  E. Blackburn,et al.  Human Rif1 protein binds aberrant telomeres and aligns along anaphase midzone microtubules , 2004, The Journal of cell biology.

[38]  D. Broccoli,et al.  p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. , 1999, Science.

[39]  D. Broccoli,et al.  Human telomeres contain two distinct Myb–related proteins, TRF1 and TRF2 , 1997, Nature Genetics.

[40]  Frank Eisenhaber,et al.  Human Rif1, ortholog of a yeast telomeric protein, is regulated by ATM and 53BP1 and functions in the S-phase checkpoint. , 2004, Genes & development.

[41]  T. Cech,et al.  Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection , 2004, Nature Structural &Molecular Biology.

[42]  M. Brenneman,et al.  Frequent recombination in telomeric DNA may extend the proliferative life of telomerase-negative cells. , 2004, Nucleic acids research.

[43]  N. Carter,et al.  A DNA damage checkpoint response in telomere-initiated senescence , 2003, Nature.

[44]  J. Griffith,et al.  Telomeric DNA in ALT Cells Is Characterized by Free Telomeric Circles and Heterogeneous t-Loops , 2004, Molecular and Cellular Biology.

[45]  J. Campisi,et al.  The human telomere‐associated protein TIN2 stimulates interactions between telomeric DNA tracts in vitro , 2003, EMBO reports.

[46]  J. Campisi,et al.  TIN2, a new regulator of telomere length in human cells , 1999, Nature Genetics.

[47]  M. Ikura,et al.  The Bloom syndrome helicase BLM interacts with TRF2 in ALT cells and promotes telomeric DNA synthesis. , 2002, Human molecular genetics.

[48]  E. Gilson,et al.  Telomeric localization of TRF2, a novel human telobox protein , 1997, Nature Genetics.

[49]  J. Shay,et al.  Telomeric Recombination in Mismatch Repair Deficient Human Colon Cancer Cells after Telomerase Inhibition , 2004, Cancer Research.

[50]  E. Blackburn,et al.  Ku is associated with the telomere in mammals. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[51]  R. Verdun,et al.  Defective Telomere Lagging Strand Synthesis in Cells Lacking WRN Helicase Activity , 2004, Science.

[52]  Tom J. Petty,et al.  Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks , 2004, Nature.

[53]  John M Sedivy,et al.  Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). , 2004, Molecular cell.

[54]  J. Griffith,et al.  TRF1 promotes parallel pairing of telomeric tracts in vitro. , 1998, Journal of molecular biology.

[55]  D. Orren,et al.  TRF2 recruits the Werner syndrome (WRN) exonuclease for processing of telomeric DNA , 2004, Oncogene.

[56]  T. Lange,et al.  DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion , 2005, Nature Cell Biology.

[57]  Bas van Steensel,et al.  TRF2 Protects Human Telomeres from End-to-End Fusions , 1998, Cell.

[58]  Jun Qin,et al.  PTOP interacts with POT1 and regulates its localization to telomeres , 2004, Nature Cell Biology.

[59]  Tatiana Nikitina,et al.  Closed chromatin loops at the ends of chromosomes , 2004, The Journal of cell biology.

[60]  M. Hande,et al.  Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells , 2001, Current Biology.

[61]  P. Baumann,et al.  Pot1, the Putative Telomere End-Binding Protein in Fission Yeast and Humans , 2001, Science.

[62]  M. Kastan,et al.  DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation , 2003, Nature.

[63]  J. Lingner,et al.  Human Protection of Telomeres 1 (POT1) Is a Negative Regulator of Telomerase Activity In Vitro , 2005, Molecular and Cellular Biology.

[64]  D. Loayza,et al.  DNA Binding Features of Human POT1 , 2004, Journal of Biological Chemistry.

[65]  G4 DNA unwinding by BLM and Sgs1p: substrate specificity and substrate-specific inhibition. , 2002, Nucleic acids research.

[66]  T. Lange,et al.  Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. , 1998, Science.

[67]  B. Chait,et al.  POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. , 2004, Genes & development.

[68]  T. Lange,et al.  Homologous Recombination Generates T-Loop-Sized Deletions at Human Telomeres , 2004, Cell.

[69]  S. West,et al.  Telomere Maintenance Requires the RAD51D Recombination/Repair Protein , 2004, Cell.

[70]  B. Chait,et al.  TIN2 Binds TRF1 and TRF2 Simultaneously and Stabilizes the TRF2 Complex on Telomeres* , 2004, Journal of Biological Chemistry.

[71]  Louise Fairall,et al.  How the human telomeric proteins TRF1 and TRF2 recognize telomeric DNA: a view from high‐resolution crystal structures , 2005, EMBO reports.

[72]  A. Jauch,et al.  DNA Ligase IV-Dependent NHEJ of Deprotected Mammalian Telomeres in G1 and G2 , 2002, Current Biology.

[73]  T. Lange Telomere Capping--One Strand Fits All , 2001 .

[74]  L. Guarente,et al.  Nuclear structure in normal and Bloom syndrome cells. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[75]  I. Hickson,et al.  Telomere-binding Protein TRF2 Binds to and Stimulates the Werner and Bloom Syndrome Helicases* , 2002, The Journal of Biological Chemistry.

[76]  J. Griffith,et al.  T‐loop assembly in vitro involves binding of TRF2 near the 3′ telomeric overhang , 2001, The EMBO journal.

[77]  Susan Smith,et al.  TRF1 is degraded by ubiquitin-mediated proteolysis after release from telomeres. , 2003, Genes & development.

[78]  C. Harris,et al.  POT1 and TRF2 Cooperate To Maintain Telomeric Integrity , 2005, Molecular and Cellular Biology.

[79]  J. Langmore,et al.  Long G Tails at Both Ends of Human Chromosomes Suggest a C Strand Degradation Mechanism for Telomere Shortening , 1997, Cell.

[80]  J. Campisi,et al.  TIN2 Mediates Functions of TRF2 at Human Telomeres* , 2004, Journal of Biological Chemistry.

[81]  E. Gilson,et al.  Functional Interaction between Poly(ADP-Ribose) Polymerase 2 (PARP-2) and TRF2: PARP Activity Negatively Regulates TRF2 , 2004, Molecular and Cellular Biology.

[82]  J. Shay,et al.  POT1 protects telomeres from a transient DNA damage response and determines how human chromosomes end , 2005, The EMBO journal.

[83]  J. Mata,et al.  Methylation of Histone H4 Lysine 20 Controls Recruitment of Crb2 to Sites of DNA Damage , 2004, Cell.

[84]  T. Lange,et al.  TIN2 is a tankyrase 1 PARP modulator in the TRF1 telomere length control complex , 2004, Nature Genetics.

[85]  R. Reddel,et al.  Telomere maintenance and cancer ? look, no telomerase , 2002, Nature Reviews Cancer.