Statistical significance of sequential firing patterns in multi-neuronal spike trains

[1]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[2]  D. Georgescauld Local Cortical Circuits, An Electrophysiological Study , 1983 .

[3]  G L Gerstein,et al.  Detecting spatiotemporal firing patterns among simultaneously recorded single neurons. , 1988, Journal of neurophysiology.

[4]  Moshe Abeles,et al.  Corticonics: Neural Circuits of Cerebral Cortex , 1991 .

[5]  Jim Freeman,et al.  Stochastic Processes (Second Edition) , 1996 .

[6]  Akira Date,et al.  On the temporal resolution of neural activity , 1998 .

[7]  E. Vaadia,et al.  Spatiotemporal structure of cortical activity: properties and behavioral relevance. , 1998, Journal of neurophysiology.

[8]  J. Csicsvari,et al.  Replay and Time Compression of Recurring Spike Sequences in the Hippocampus , 1999, The Journal of Neuroscience.

[9]  Igor V. Tetko,et al.  A pattern grouping algorithm for analysis of spatiotemporal patterns in neuronal spike trains. 1. Detection of repeated patterns , 2001, Journal of Neuroscience Methods.

[10]  M. Abeles,et al.  Detecting precise firing sequences in experimental data , 2001, Journal of Neuroscience Methods.

[11]  Asohan Amarasingham,et al.  At what time scale does the nervous system operate? , 2003, Neurocomputing.

[12]  Yuji Ikegaya,et al.  Synfire Chains and Cortical Songs: Temporal Modules of Cortical Activity , 2004, Science.

[13]  R. Kass,et al.  Multiple neural spike train data analysis: state-of-the-art and future challenges , 2004, Nature Neuroscience.

[14]  George L Gerstein,et al.  Searching for significance in spatio-temporal firing patterns. , 2004, Acta neurobiologiae experimentalis.

[15]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[16]  P. J. Sjöström,et al.  Correction: Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS Biology.

[17]  Gordon Pipa,et al.  NeuroXidence: reliable and efficient analysis of an excess or deficiency of joint-spike events , 2009, Journal of Computational Neuroscience.

[18]  Steve M. Potter,et al.  Precisely timed spatiotemporal patterns of neural activity in dissociated cortical cultures , 2007, Neuroscience.

[19]  Debprakash Patnaik,et al.  Inferring neuronal network connectivity from spike data: A temporal data mining approach , 2008, Sci. Program..

[20]  Stuart Geman,et al.  A Rate and History-Preserving Resampling Algorithm for Neural Spike Trains , 2009, Neural Computation.

[21]  P. S. Sastry,et al.  Conditional Probability-Based Significance Tests for Sequential Patterns in Multineuronal Spike Trains , 2008, Neural Computation.