Synthesizing metamaterials with angularly independent effective medium properties based on an anisotropic parameter retrieval technique coupled with a genetic algorithm

In this paper, we present a method to retrieve the effective electromagnetic parameters of a slab of anisotropicmetamaterial from reflection and transmission coefficients (or scattering parameters). In this retrieval method, calculated or measuredscattering parameters are employed for plane waves incident obliquely on a metamaterial slab at different angles. Useful analytical expressions are derived for extracting the homogeneous anisotropic medium parameters of a metamaterial. To validate the method, the effective permittivity and permeability tensor parameters for a composite split-ring resonator-wire array are retrieved and shown to be consistent with observations previously reported in the literature. This retrieval method is further incorporated into a genetic algorithm (GA) to synthesize an infrared zero-index-metamaterial with a wide field-of-view, demonstrating the utility of the new design approach. The anisotropic parameter retrieval algorithm, when combined with a robust optimizer such as GA, can provide a powerful design tool for exploiting the anisotropicproperties in metamaterials to achieve specific angle dependant or independent responses.

[1]  D. Werner,et al.  The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces , 2005, IEEE Transactions on Antennas and Propagation.

[2]  M. Wegener,et al.  Low-loss negative-index metamaterial at telecommunication wavelengths. , 2006, Optics letters.

[3]  D.J. Kern,et al.  Metaferrites: using electromagnetic bandgap structures to synthesize metamaterial ferrites , 2005, IEEE Transactions on Antennas and Propagation.

[4]  Silvio Hrabar,et al.  Experimental investigation of radiation properties of an antenna embedded in low permittivity thin-wire-based metamaterial , 2006 .

[5]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[6]  Liangbin Hu,et al.  Characteristics of electromagnetic wave propagation in uniaxially anisotropic left-handed materials , 2002 .

[7]  Do-Hoon Kwon,et al.  Material parameter retrieval procedure for general bi-isotropic metamaterials and its application to optical chiral negative-index metamaterial design. , 2008, Optics express.

[8]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[9]  D. Werner,et al.  A genetic algorithm approach to the design of ultra‐thin electromagnetic bandgap absorbers , 2003 .

[10]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[11]  Jin Au Kong,et al.  Retrieval of the effective constitutive parameters of bianisotropic metamaterials. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  D. R. Smith,et al.  Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials , 2004, cond-mat/0411590.

[13]  R. Marqués,et al.  Optimizing the magnetoinductive lens: Improvement, limits, and possible applications , 2008 .

[14]  Jian-Ming Jin,et al.  The Finite Element Method in Electromagnetics , 1993 .

[15]  C M Soukoulis,et al.  Effective medium theory of left-handed materials. , 2004, Physical review letters.

[16]  Iam-Choon Khoo,et al.  Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices. , 2007, Optics express.

[17]  Carsten Rockstuhl,et al.  Retrieving effective parameters for metamaterials at oblique incidence , 2008 .

[18]  D. Smith,et al.  Resonant and antiresonant frequency dependence of the effective parameters of metamaterials. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[20]  Nader Engheta,et al.  Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials. , 2006, Physical review letters.

[21]  G. Tayeb,et al.  A metamaterial for directive emission. , 2002, Physical review letters.

[22]  Ronan Sauleau,et al.  Effective parameters of resonant negative refractive index metamaterials : interpretation and validity , 2005 .

[23]  Ekmel Ozbay,et al.  Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Jin Au Kong,et al.  Robust method to retrieve the constitutive effective parameters of metamaterials. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  J. Kong Electromagnetic Wave Theory , 1986 .

[26]  F. Medina,et al.  Comparative analysis of edge- and broadside- coupled split ring resonators for metamaterial design - theory and experiments , 2003 .

[27]  Douglas H. Werner,et al.  Zero index metamaterials with checkerboard structure , 2007 .

[28]  Richard W Ziolkowski,et al.  Propagation in and scattering from a matched metamaterial having a zero index of refraction. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[30]  P.A. Belov,et al.  On the low-frequency spatial dispersion in wire media , 2005, IWAT 2005. IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, 2005..

[31]  Willie J. Padilla,et al.  Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements , 2007 .

[32]  Do-Hoon Kwon,et al.  Low-index metamaterial designs in the visible spectrum. , 2007, Optics express.

[33]  Francisco Medina,et al.  Role of bianisotropy in negative permeability and left-handed metamaterials , 2002 .

[34]  Jin Au Kong,et al.  Inversion of critical angle and Brewster angle in anisotropic left-handed metamaterials , 2005 .

[35]  D. Smith,et al.  Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients , 2001, physics/0111203.

[36]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[37]  D. Smith,et al.  Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. , 2002, Physical Review Letters.

[38]  Steven A. Cummer,et al.  Determining the effective electromagnetic properties of negative-refractive-index metamaterials from internal fields , 2005 .