Power system stabilization based on artificial intelligent techniques; A review

This paper reviews new approaches in modern research using Artificial Intelligent (AI) techniques to develop power system stabilizer (PSS). These techniques are Artificial Neural Network (ANN), fuzzy logic, hybrid artificial intelligent, expert systems, and optimization techniques base AI such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Tabu Search (TS) algorithm, etc. Research showed controllers designed based on a conventional control theory, modern and adaptive control theories, suffer from some limitations. However, AI techniques proved to be able to overcome theses limits. Hence, more researchers preferred to utilize these approaches for the power systems. The review efforts geared towards PSS and excitation system stabilizer developed based on AI techniques, which effectively enhance both small signal stability and transient stability and equally provide superior performances. In addition, the dynamic performance of different AI based stabilizers are established and compared with other types of PSSs.

[1]  M. A. Abido,et al.  A fuzzy basis function network based power system stabilizer for generator excitation control , 1999 .

[2]  S. Elangovan,et al.  Enhanced power system stabilizer via integrated tabu–fuzzy knowledge based controller , 2003 .

[3]  Lefteri H. Tsoukalas,et al.  Fuzzy and neural approaches in engineering , 1997 .

[4]  Om P. Malik Amalgamation of adaptive control and AI techniques: applications to generator excitation control , 2004, Annu. Rev. Control..

[5]  M. A. Abido,et al.  A particle-swarm-based approach of power system stability enhancement with unified power flow controller , 2007 .

[6]  Bikas K. Chakrabarti,et al.  Quantum Annealing and Other Optimization Methods , 2005 .

[7]  Chun-xia Dou,et al.  Delay-independent decentralized stabilizer design for large interconnected power systems based on WAMS , 2007 .

[8]  M. A. Abido,et al.  A novel approach to conventional power system stabilizer design using tabu search , 1999 .

[9]  D. A. Linkens,et al.  Training of neurofuzzy power system stabilisers using genetic algorithms , 2000 .

[10]  Sungshin Kim,et al.  Design of fuzzy power system stabilizer using adaptive evolutionary algorithm , 2000, ISIE'2000. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics (Cat. No.00TH8543).

[11]  Y. Sergeyev,et al.  Tuning fuzzy power-system stabilizers in multi-machine systems by global optimization algorithms based on efficient domain partitions , 2008 .

[12]  A. M. El-Zonkoly,et al.  Optimal tunning of lead-lag and fuzzy logic power system stabilizers using particle swarm optimization , 2009, Expert Syst. Appl..

[13]  D. A. Pierre,et al.  A fuzzy logic-based adaptive power system stabilizer for multi-machine systems , 2001 .

[14]  Akhtar Kalam,et al.  A hierarchical neural network adaptive power system stabilizer , 1999 .

[15]  Adel M. Sharaf,et al.  A novel fuzzy state feedback controller for power system stabilization , 1996 .

[16]  Akhtar Kalam,et al.  An indirect adaptive fuzzy-logic power system stabiliser , 2002 .

[17]  Sakti Prasad Ghoshal,et al.  INTELLIGENT PARTICLE SWARM OPTIMIZED FUZZY PID CONTROLLER FOR AVR SYSTEM , 2007 .

[18]  Milan S. Ćalović,et al.  Coordinated stabilizing control for the exciter and governor loops using fuzzy set theory and neural nets , 1997 .

[19]  K. Sebaa,et al.  Optimal Locations and tuning of Robust Power System Stabilizers using Genetic Algorithms , 2006, IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics.

[20]  K. A. El-Metwally,et al.  A variable-structure adaptive fuzzy-logic stabilizer for single and multi-machine power systems , 2004 .

[21]  A. Feliachi,et al.  Genetic algorithm based inter-area oscillation damping controller design using MATLAB , 2002, IEEE Power Engineering Society Summer Meeting,.

[22]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[23]  Srinivas Pillutla Power system stabilization based on modular neural network architecture , 1997 .

[24]  Om P. Malik,et al.  Design of a neural adaptive power system stabilizer using dynamic back-propagation method , 2000 .

[25]  Glauco N. Taranto,et al.  Simultaneous tuning of power system damping controllers using genetic algorithms , 2000 .

[26]  Mohammed E. El-Hawary,et al.  Electric Power Applications of Fuzzy Systems , 1998 .

[27]  M. L. Kothari,et al.  A self-tuning power system stabilizer based on artificial neural network , 2004 .

[28]  M. A. Abido,et al.  Coordinated design of a PSS and an SVC-based controller to enhance power system stability , 2003 .

[29]  Mohammad Ali Abido An efficient heuristic optimization technique for robust power system stabilizer design , 2001 .

[30]  Aditya,et al.  Design of Load Frequency Controllers Using Genetic Algorithm for Two Area Interconnected Hydro Power System , 2003 .

[31]  He Ping,et al.  Studies of the improvement of probabilistic PSSs by using the single neuron model , 2007 .

[32]  Sezai Tokat,et al.  Determination of optimal hierarchical fuzzy controller parameters according to loading condition with ANN , 2008, Expert Syst. Appl..

[33]  Mohammad Ali Abido,et al.  Adaptive tuning of power system stabilizers using radial basis function networks , 1999 .

[34]  Dianguo Xu,et al.  The Study of UPFC Fuzzy Control with Self-adjustable Factor , 2005, 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific.

[35]  Adel M. Sharaf,et al.  An adaptive fuzzy logic power system stabilizer , 1996 .

[36]  Devendra K. Chaturvedi,et al.  Generalized neuron-based PSS and adaptive PSS , 2005 .

[37]  Dan W. Patterson,et al.  Artificial Neural Networks: Theory and Applications , 1998 .

[38]  Abdel-Latif Elshafei,et al.  Robust adaptive fuzzy logic power system stabilizer , 2009, Expert Syst. Appl..

[39]  A. Chatterjee,et al.  Bio-inspired fuzzy logic based tuning of power system stabilizer , 2009, Expert Syst. Appl..

[40]  J. Nanda,et al.  Multi-machine power system stabilizer design by rule based bacteria foraging , 2007 .

[41]  Kevin M. Passino,et al.  Biomimicry of bacterial foraging for distributed optimization and control , 2002 .

[42]  G.K. Venayagamoorthy,et al.  Optimal control parameters for a UPFC in a multimachine using PSO , 2005, Proceedings of the 13th International Conference on, Intelligent Systems Application to Power Systems.

[43]  Tomonobu Senjyu,et al.  Recurrent Neural Network Supplementary Stabilization Controller for Automatic Voltage Regulator and Governor , 2003 .

[44]  João Peças Lopes,et al.  A neural power system stabilizer trained using local linear controllers in a gain-scheduling scheme , 2005 .

[45]  A. C. Liew,et al.  An adaptive PID stabilizer for power systems using fuzzy logic , 1998 .

[46]  Ganesh K. Venayagamoorthy,et al.  A wide area measurement based neurocontrol for generation excitation systems , 2009, Eng. Appl. Artif. Intell..

[47]  Abdel-Latif Elshafei,et al.  LMI static output-feedback design of fuzzy power system stabilizers , 2009, Expert Syst. Appl..

[48]  S. Chowdhury,et al.  Performance of A Fuzzy Power System Stabilizer With Tie Line Active Power Deviation Feedback , 2006, 2006 IEEE PES Power Systems Conference and Exposition.

[49]  B. Chakrabarti,et al.  Quantum Annealing and Related Optimization Methods , 2008 .

[50]  Eduardo M. Gouveia,et al.  Symmetric AC fuzzy power flow model , 2009, Eur. J. Oper. Res..