Social Media Summarization

Social media is an important venue for information sharing, discussions or conversations on a variety of topics and events generated or happening across the globe. Application of automated text summarization techniques on the large volume of information piled up in social media can produce textual summaries in a variety of flavors depending on the difficulty of the use case. This chapter talks about the available set of techniques to generate summaries from different genres of social media text with an extensive introduction to extractive summarization techniques.

[1]  Lucy Vanderwende,et al.  Exploring Content Models for Multi-Document Summarization , 2009, NAACL.

[2]  ChengXiang Zhai,et al.  Comprehensive Review of Opinion Summarization , 2011 .

[3]  Vasudeva Varma,et al.  Sentence Position revisited: A robust light-weight Update Summarization ‘baseline’ Algorithm , 2009 .

[4]  Katelyn Y. A. McKenna,et al.  The internet and social life. , 2004, Annual review of psychology.

[5]  Zhenhua Wang,et al.  Sumblr: continuous summarization of evolving tweet streams , 2013, SIGIR.

[6]  Kathleen R. McKeown,et al.  Columbia multi-document summarization : Approach and evaluation , 2001 .

[7]  Andrea Esuli,et al.  SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining , 2010, LREC.

[8]  Chris Mellish,et al.  Evaluating Centering-Based Metrics of Coherence , 2004, ACL.

[9]  Ion Androutsopoulos,et al.  Extractive Multi-Document Summarization with Integer Linear Programming and Support Vector Regression , 2012, COLING.

[10]  Jade Goldstein-Stewart,et al.  The use of MMR, diversity-based reranking for reordering documents and producing summaries , 1998, SIGIR '98.

[11]  Bing Liu,et al.  Mining Opinion Features in Customer Reviews , 2004, AAAI.

[12]  Tao Li,et al.  Multi-Document Summarization via the Minimum Dominating Set , 2010, COLING.

[13]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[14]  Mirella Lapata,et al.  Probabilistic Text Structuring: Experiments with Sentence Ordering , 2003, ACL.

[15]  Krishna P. Gummadi,et al.  On the evolution of user interaction in Facebook , 2009, WOSN '09.

[16]  Dan Klein,et al.  Jointly Learning to Extract and Compress , 2011, ACL.

[17]  Dragomir R. Radev,et al.  LexRank: Graph-based Centrality as Salience in Text Summarization , 2004 .

[18]  Tao Li,et al.  A Participant-based Approach for Event Summarization Using Twitter Streams , 2013, NAACL.

[19]  Dragomir R. Radev,et al.  Citation Summarization Through Keyphrase Extraction , 2010, COLING.

[20]  Hinrich Schütze,et al.  Automatic generation of short informative sentiment summaries , 2012, EACL.

[21]  Vasudeva Varma,et al.  Estimating Risk of Picking a Sentence for Document Summarization , 2009, CICLing.

[22]  Vasudeva Varma,et al.  Topic-Focused Summarization of Chat Conversations , 2013, ECIR.

[23]  Yan Liu,et al.  Towards Twitter context summarization with user influence models , 2013, WSDM.

[24]  Dong-Hong Ji,et al.  Sentence Ordering based on Cluster Adjacency in Multi-Document Summarization , 2008, IJCNLP.

[25]  Mirella Lapata,et al.  Multiple Aspect Summarization Using Integer Linear Programming , 2012, EMNLP.

[26]  Freddy Chong Tat Chua,et al.  Automatic Summarization of Events from Social Media , 2013, ICWSM.

[27]  Tie-Yan Liu,et al.  Learning to rank: from pairwise approach to listwise approach , 2007, ICML '07.

[28]  Brendan T. O'Connor,et al.  TweetMotif: Exploratory Search and Topic Summarization for Twitter , 2010, ICWSM.

[29]  Andrei Olariu Efficient Online Summarization of Microblogging Streams , 2014, EACL.

[30]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[31]  Oren Etzioni,et al.  Extracting Product Features and Opinions from Reviews , 2005, HLT.

[32]  Claire Cardie,et al.  Query-Focused Opinion Summarization for User-Generated Content , 2014, COLING.

[33]  Vasudeva Varma,et al.  Generating Personalized Summaries Using Publicly Available Web Documents , 2008, 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[34]  Hiroya Takamura,et al.  Text Summarization Model Based on Maximum Coverage Problem and its Variant , 2009, EACL.

[35]  Yinglin Wang,et al.  Generating Aspect-oriented Multi-Document Summarization with Event-aspect model , 2011, EMNLP.

[36]  Yue Lu,et al.  Rated aspect summarization of short comments , 2009, WWW '09.

[37]  Stephen E. Robertson,et al.  A probabilistic model of information retrieval: development and comparative experiments - Part 1 , 2000, Inf. Process. Manag..

[38]  Michel Minoux,et al.  Accelerated greedy algorithms for maximizing submodular set functions , 1978 .

[39]  Thorsten Joachims,et al.  Temporal corpus summarization using submodular word coverage , 2012, CIKM '12.

[40]  Deepayan Chakrabarti,et al.  Event Summarization Using Tweets , 2011, ICWSM.

[41]  Vasudeva Varma,et al.  Capturing Sentence Prior for Query-Based Multi-Document Summarization , 2007, RIAO.

[42]  Ahmet Aker,et al.  Multi-Document Summarization Using A* Search and Discriminative Learning , 2010, EMNLP.

[43]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[44]  Umeshwar Dayal,et al.  Ranking explanatory sentences for opinion summarization , 2013, SIGIR.

[45]  Jade Goldstein-Stewart,et al.  The Use of MMR, Diversity-Based Reranking for Reordering Documents and Producing Summaries , 1998, SIGIR Forum.

[46]  Dragomir R. Radev,et al.  LexRank: Graph-based Lexical Centrality as Salience in Text Summarization , 2004, J. Artif. Intell. Res..

[47]  Chandan K. Reddy,et al.  Location-specific tweet detection and topic summarization in Twitter , 2013, 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013).

[48]  Li Chen,et al.  A Linear-Chain CRF-Based Learning Approach for Web Opinion Mining , 2010, WISE.

[49]  Daniel Dajun Zeng,et al.  Mining Fine Grained Opinions by Using Probabilistic Models and Domain Knowledge , 2010, 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[50]  Oren Etzioni,et al.  Towards Coherent Multi-Document Summarization , 2013, NAACL.

[51]  Pattarachai Lalitrojwong,et al.  Automatic product feature extraction from online product reviews using maximum entropy with lexical and syntactic features , 2008, 2008 IEEE International Conference on Information Reuse and Integration.

[52]  Peifeng Li,et al.  Using Context Inference to Improve Sentence Ordering for Multi-document Summarization , 2011, IJCNLP.

[53]  Roger Ratcliff,et al.  Inference during reading. , 1992 .

[54]  Brendan T. O'Connor,et al.  Part-of-Speech Tagging for Twitter: Annotation, Features, and Experiments , 2010, ACL.

[55]  Dilek Z. Hakkani-Tür,et al.  A Hybrid Hierarchical Model for Multi-Document Summarization , 2010, ACL.